Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neurochem ; 133(3): 440-51, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25556849

RESUMO

The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) gene is located within the Down Syndrome (DS) critical region on chromosome 21 and is implicated in the generation of Tau and amyloid pathologies that are associated with the early onset Alzheimer's Disease (AD) observed in DS. DYRK1A is also found associated with neurofibrillary tangles in sporadic AD and phosphorylates key AD players (Tau, amyloid precursor, protein, etc). Thus, DYRK1A may be an important therapeutic target to modify the course of Tau and amyloid beta (Aß) pathologies. Here, we describe EHT 5372 (methyl 9-(2,4-dichlorophenylamino) thiazolo[5,4-f]quinazoline-2-carbimidate), a novel, highly potent (IC50 = 0.22 nM) DYRK1A inhibitor with a high degree of selectivity over 339 kinases. Models in which inhibition of DYRK1A by siRNA reduced and DYRK1A over-expression induced Tau phosphorylation or Aß production were used. EHT 5372 inhibits DYRK1A-induced Tau phosphorylation at multiple AD-relevant sites in biochemical and cellular assays. EHT 5372 also normalizes both Aß-induced Tau phosphorylation and DYRK1A-stimulated Aß production. DYRK1A is thus as a key element of Aß-mediated Tau hyperphosphorylation, which links Tau and amyloid pathologies. EHT 5372 and other compounds in its class warrant in vivo investigation as a novel, high-potential therapy for AD and other Tau opathies. Inhibition of the dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) is a new high-potential therapeutic approach for Alzheimer disease. Here we describe EHT 5372, a novel potent and selective DYRK1A inhibitor. EHT 5372 inhibits DYRK1A-induced Tau phosphorylation, Aß production and Aß effects on phospho-Tau, including Tau aggregation.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/biossíntese , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas tau/biossíntese , Doença de Alzheimer/tratamento farmacológico , Animais , Células Cultivadas , Células HEK293 , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Ratos Wistar , Resultado do Tratamento , Quinases Dyrk
2.
Molecules ; 19(10): 15411-39, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25264830

RESUMO

The convenient synthesis of a focused library (forty molecules) of novel 6,6,5-tricyclic thiazolo[5,4-f]quinazolines was realized mainly under microwave irradiation. A novel 6-aminobenzo[d]thiazole-2,7-dicarbonitrile (1) was used as a versatile molecular platform for the synthesis of various derivatives. Kinase inhibition, of the obtained final compounds, was evaluated on a panel of two kinases (DYRK1A/1B) together with some known reference DYRK1A and DYRK1B inhibitors (harmine, TG003, NCGC-00189310 and leucettine L41). Compound IC50 values were obtained and compared. Five of the novel thiazolo[5,4-f]quinazoline derivatives prepared, EHT 5372 (8c), EHT 6840 (8h), EHT 1610 (8i), EHT 9851 (8k) and EHT 3356 (9b) displayed single-digit nanomolar or subnanomolar IC50 values and are among the most potent DYRK1A/1B inhibitors disclosed to date. DYRK1A/1B kinases are known to be involved in the regulation of various molecular pathways associated with oncology, neurodegenerative diseases (such as Alzheimer disease, AD, or other tauopathies), genetic diseases (such as Down Syndrome, DS), as well as diseases involved in abnormal pre-mRNA splicing. The compounds described in this communication constitute a highly potent set of novel molecular probes to evaluate the biology/pharmacology of DYR1A/1B in such diseases.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/química , Quinazolinas/química , Quinazolinas/farmacologia , Técnicas de Química Sintética , Ativação Enzimática/efeitos dos fármacos , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Quinazolinas/síntese química , Quinases Dyrk
3.
Genes Dev ; 23(15): 1749-62, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19584108

RESUMO

In germ cells, Piwi proteins interact with a specific class of small noncoding RNAs, piwi-interacting RNAs (piRNAs). Together, these form a pathway that represses transposable elements, thus safeguarding germ cell genomes. Basic models describe the overall operation of piRNA pathways. However, the protein compositions of Piwi complexes, the critical protein-protein interactions that drive small RNA production and target recognition, and the precise molecular consequences of conserved localization to germline structures, call nuage, remains poorly understood. We purified the three murine Piwi family proteins, MILI, MIWI, and MIWI2, from mouse germ cells and characterized their interacting protein partners. Piwi proteins were found in complex with PRMT5/WDR77, an enzyme that dimethylates arginine residues. By immunoprecipitation with specific antibodies and by mass spectrometry, we found that Piwi proteins are arginine methylated at conserved positions in their N termini. These modifications are essential to direct complex formation with specific members of the Tudor protein family. Recognition of methylarginine marks by Tudor proteins can drive the localization of Piwi proteins to cytoplasmic foci in an artificial setting, supporting a role for this interaction in Piwi localization to nuage, a characteristic that correlates with proper operation of the piRNA pathway and transposon silencing in multiple organisms.


Assuntos
Arginina/metabolismo , Proteínas/metabolismo , Ribonucleoproteínas/metabolismo , Testículo/metabolismo , Animais , Proteínas Argonautas , Proteínas de Ciclo Celular , Linhagem Celular , Elementos de DNA Transponíveis/fisiologia , Humanos , Masculino , Metilação , Camundongos , Proteínas Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases , Proteínas/isolamento & purificação , Proteômica , Ribonucleoproteínas Nucleares Pequenas/metabolismo
4.
Nature ; 453(7194): 534-8, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18404147

RESUMO

Pseudogenes populate the mammalian genome as remnants of artefactual incorporation of coding messenger RNAs into transposon pathways. Here we show that a subset of pseudogenes generates endogenous small interfering RNAs (endo-siRNAs) in mouse oocytes. These endo-siRNAs are often processed from double-stranded RNAs formed by hybridization of spliced transcripts from protein-coding genes to antisense transcripts from homologous pseudogenes. An inverted repeat pseudogene can also generate abundant small RNAs directly. A second class of endo-siRNAs may enforce repression of mobile genetic elements, acting together with Piwi-interacting RNAs. Loss of Dicer, a protein integral to small RNA production, increases expression of endo-siRNA targets, demonstrating their regulatory activity. Our findings indicate a function for pseudogenes in regulating gene expression by means of the RNA interference pathway and may, in part, explain the evolutionary pressure to conserve argonaute-mediated catalysis in mammals.


Assuntos
Oócitos/metabolismo , Pseudogenes/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Biologia Computacional , Elementos de DNA Transponíveis/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonuclease III/deficiência , Ribonuclease III/genética , Ribonuclease III/metabolismo
5.
Trends Cell Biol ; 18(3): 136-48, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18282709

RESUMO

Eukaryotes are engaged in a constant struggle against transposable elements, which have invaded and profoundly shaped their genomes. Over the past decade, a growing body of evidence has pointed to a role for small RNAs in transposon defense. Although the strategies used in different organisms vary in their details, they have strikingly similar general properties. Basically, all mechanisms consist of three components. First, transposon detection prompts the production of small RNAs, which are Piwi-interacting RNAs in some organisms and small interfering RNAs in others. Second, the population of small RNAs targeting active transposons is amplified through an RNA-dependent RNA polymerase-based or Slicer-based mechanism. Third, small RNAs are incorporated into Argonaute- or Piwi-containing effector complexes, which target transposon transcripts for post-transcriptional silencing and/or target transposon DNA for repressive chromatin modification and DNA methylation. These properties produce robust systems that limit the catastrophic consequences of transposon mobilization, which can result in the accumulation of deleterious mutations, changes in gene expression patterns, and conditions such as gonadal hypotrophy and sterility.


Assuntos
Elementos de DNA Transponíveis , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Montagem e Desmontagem da Cromatina , Metilação de DNA , Fatores de Iniciação em Eucariotos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Humanos , Padrões de Herança , Processamento Pós-Transcricional do RNA , RNA Fúngico/metabolismo , RNA de Plantas/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo
6.
Cell ; 129(1): 69-82, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17418787

RESUMO

Piwi proteins specify an animal-specific subclass of the Argonaute family that, in vertebrates, is specifically expressed in germ cells. We demonstrate that zebrafish Piwi (Ziwi) is expressed in both the male and the female gonad and is a component of a germline-specifying structure called nuage. Loss of Ziwi function results in a progressive loss of germ cells due to apoptosis during larval development. In animals that have reduced Ziwi function, germ cells are maintained but display abnormal levels of apoptosis in adults. In mammals, Piwi proteins associate with approximately 29-nucleotide-long, testis-specific RNA molecules called piRNAs. Here we show that zebrafish piRNAs are present in both ovary and testis. Many of these are derived from transposons, implicating a role for piRNAs in the silencing of repetitive elements in vertebrates. Furthermore, we show that piRNAs are Dicer independent and that their 3' end likely carries a 2'O-Methyl modification.


Assuntos
Células Germinativas/citologia , RNA não Traduzido/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Embrião não Mamífero/química , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Feminino , Genoma , Células Germinativas/química , Células Germinativas/metabolismo , Masculino , Ovário/citologia , Interferência de RNA , RNA não Traduzido/genética , Proteínas de Ligação a RNA/metabolismo , Retroelementos , Testículo/citologia , Peixe-Zebra
7.
Science ; 316(5825): 744-7, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17446352

RESUMO

Nearly half of the mammalian genome is composed of repeated sequences. In Drosophila, Piwi proteins exert control over transposons. However, mammalian Piwi proteins, MIWI and MILI, partner with Piwi-interacting RNAs (piRNAs) that are depleted of repeat sequences, which raises questions about a role for mammalian Piwi's in transposon control. A search for murine small RNAs that might program Piwi proteins for transposon suppression revealed developmentally regulated piRNA loci, some of which resemble transposon master control loci of Drosophila. We also find evidence of an adaptive amplification loop in which MILI catalyzes the formation of piRNA 5' ends. Mili mutants derepress LINE-1 (L1) and intracisternal A particle and lose DNA methylation of L1 elements, demonstrating an evolutionarily conserved role for PIWI proteins in transposon suppression.


Assuntos
Proteínas/metabolismo , RNA não Traduzido/genética , Retroelementos , Espermatócitos/metabolismo , Supressão Genética , Regiões 3' não Traduzidas , Animais , Proteínas Argonautas , Análise por Conglomerados , Biologia Computacional , Metilação de DNA , Genes de Partícula A Intracisternal , Elementos Nucleotídeos Longos e Dispersos , Masculino , Meiose , Camundongos , Mutação , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA não Traduzido/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Elementos Nucleotídeos Curtos e Dispersos , Espermatócitos/citologia , Espermatogênese
8.
Dev Cell ; 12(4): 503-14, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17395546

RESUMO

Small RNAs associate with Argonaute proteins and serve as sequence-specific guides for regulation of mRNA stability, productive translation, chromatin organization, and genome structure. In animals, the Argonaute superfamily segregates into two clades. The Argonaute clade acts in RNAi and in microRNA-mediated gene regulation in partnership with 21-22 nt RNAs. The Piwi clade, and their 26-30 nt piRNA partners, have yet to be assigned definitive functions. In mice, two Piwi-family members have been demonstrated to have essential roles in spermatogenesis. Here, we examine the effects of disrupting the gene encoding the third family member, MIWI2. Miwi2-deficient mice display a meiotic-progression defect in early prophase of meiosis I and a marked and progressive loss of germ cells with age. These phenotypes may be linked to an inappropriate activation of transposable elements detected in Miwi2 mutants. Our observations suggest a conserved function for Piwi-clade proteins in the control of transposons in the germline.


Assuntos
Elementos de DNA Transponíveis , Proteínas/fisiologia , Espermatócitos/fisiologia , Espermatogênese , Animais , Apoptose , Proteínas Argonautas , Linhagem da Célula , Metilação de DNA , Masculino , Meiose , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas/genética , Espermatócitos/metabolismo , Testículo/anormalidades , Testículo/metabolismo
9.
J Soc Biol ; 201(4): 411-8, 2007.
Artigo em Francês | MEDLINE | ID: mdl-18533102

RESUMO

The Argonaute proteins, which are the direct partners of the small RNAs involved in RNA interference mechanisms, can be divided into two subfamilies, the Argonautes and the Piwis. In animals, the Argonaute subfamily binds 21-22 nucleotide small interfering RNAs (siRNAs) and microRNAs (miRNAs), which direct cleavage and translational inhibition of their target RNAs respectively. The partners of the Piwi proteins are 24-30-nucleotide small RNAs called Piwi-interacting RNAs or piRNAs. In Drosophila, Piwi proteins and piRNAs protect the genome of the germline against selfish elements. Recent studies suggest that this function is conserved in mammals.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/fisiologia , Espermatogênese/genética , Animais , Proteínas Argonautas/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Evolução Molecular , Genoma , Mutação em Linhagem Germinativa , Humanos , Masculino , Mamíferos/genética , Camundongos , MicroRNAs/genética , Família Multigênica/genética , Mutagênese Insercional/genética , Fatores de Iniciação de Peptídeos/fisiologia , Sequências Repetitivas de Ácido Nucleico/genética , Especificidade da Espécie
10.
Nature ; 442(7099): 199-202, 2006 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-16751776

RESUMO

Small RNAs associate with Argonaute proteins and serve as sequence-specific guides to regulate messenger RNA stability, protein synthesis, chromatin organization and genome structure. In animals, Argonaute proteins segregate into two subfamilies. The Argonaute subfamily acts in RNA interference and in microRNA-mediated gene regulation using 21-22-nucleotide RNAs as guides. The Piwi subfamily is involved in germline-specific events such as germline stem cell maintenance and meiosis. However, neither the biochemical function of Piwi proteins nor the nature of their small RNA guides is known. Here we show that MIWI, a murine Piwi protein, binds a previously uncharacterized class of approximately 29-30-nucleotide RNAs that are highly abundant in testes. We have therefore named these Piwi-interacting RNAs (piRNAs). piRNAs show distinctive localization patterns in the genome, being predominantly grouped into 20-90-kilobase clusters, wherein long stretches of small RNAs are derived from only one strand. Similar piRNAs are also found in human and rat, with major clusters occurring in syntenic locations. Although their function must still be resolved, the abundance of piRNAs in germline cells and the male sterility of Miwi mutants suggest a role in gametogenesis.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas/metabolismo , Testículo/metabolismo , Animais , Proteínas Argonautas , Sequência Conservada/genética , Humanos , Masculino , Camundongos , MicroRNAs/classificação , Dados de Sequência Molecular , Família Multigênica/genética , Especificidade de Órgãos , Ligação Proteica , Ratos , Espermatogênese , Sintenia/genética , Testículo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA