Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Brain Struct Funct ; 227(6): 2049-2072, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35486186

RESUMO

The PV2 (Celio 1990), a cluster of parvalbumin-positive neurons located in the ventromedial region of the distal periaqueductal gray (PAG) has not been previously described as its own entity, leading us to study its extent, connections, and gene expression. It is an oval, bilateral, elongated cluster composed of approximately 475 parvalbumin-expressing neurons in a single mouse hemisphere. In its anterior portion it impinges upon the paratrochlear nucleus (Par4) and in its distal portion it is harbored in the posterodorsal raphe nucleus (PDR). It is known to receive inputs from the orbitofrontal cortex and from the parvafox nucleus in the ventrolateral hypothalamus. Using anterograde tracing methods in parvalbumin-Cre mice, the main projections of the PV2 cluster innervate the supraoculomotor periaqueductal gray (Su3) of the PAG, the parvafox nucleus of the lateral hypothalamus, the gemini nuclei of the posterior hypothalamus, the septal regions, and the diagonal band in the forebrain, as well as various nuclei within the reticular formation in the midbrain and brainstem. Within the brainstem, projections were discrete, but involved areas implicated in autonomic control. The PV2 cluster expressed various peptides and receptors, including the receptor for Adcyap1, a peptide secreted by one of its main afferences, namely, the parvafox nucleus. The expression of GAD1 and GAD2 in the region of the PV2, the presence of Vgat-1 in a subpopulation of PV2-neurons as well as the coexistence of GAD67 immunoreactivity with parvalbumin in terminal endings indicates the inhibitory nature of a subpopulation of PV2-neurons. The PV2 cluster may be part of a feedback controlling the activity of the hypothalamic parvafox and the Su3 nuclei in the periaqueductal gray.


Assuntos
Parvalbuminas , Substância Cinzenta Periaquedutal , Animais , Expressão Gênica , Região Hipotalâmica Lateral/metabolismo , Camundongos , Neurônios/metabolismo , Parvalbuminas/metabolismo , Substância Cinzenta Periaquedutal/fisiologia
2.
Sleep ; 43(11)2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32343818

RESUMO

STUDY OBJECTIVES: The brainstem contains several neuronal populations, heterogeneous in terms of neurotransmitter/neuropeptide content, which are important for controlling various aspects of the rapid eye movement (REM) phase of sleep. Among these populations are the Calbindin (Calb)-immunoreactive NPCalb neurons, located in the Nucleus papilio, within the dorsal paragigantocellular nucleus (DPGi), and recently shown to control eye movement during the REM phase of sleep. METHODS: We performed in-depth data mining of the in situ hybridization data collected at the Allen Brain Atlas, in order to identify potentially interesting genes expressed in this brainstem nucleus. Our attention focused on genes encoding neuropeptides, including Cart (Cocaine and Amphetamine Regulated Transcripts) and Nesfatin 1. RESULTS: While nesfatin 1 appeared ubiquitously expressed in this Calb-positive neuronal population, Cart was coexpressed in only a subset of these glutamatergic NPCalb neurons. Furthermore, an REM sleep deprivation and rebound assay performed with mice revealed that the Cart-positive neuronal population within the DPGi was activated during REM sleep (as measured by c-fos immunoreactivity), suggesting a role of this neuropeptide in regulating some aspects of REM sleep. CONCLUSIONS: The assembled information could afford functional clues to investigators, conducive to further experimental pursuits.


Assuntos
Proteínas do Tecido Nervoso , Neuropeptídeos , Animais , Tronco Encefálico/metabolismo , Calbindinas , Expressão Gênica , Camundongos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neuropeptídeos/genética
3.
Brain Struct Funct ; 224(1): 293-314, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30315416

RESUMO

Although connections between the orbitofrontal cortex (OFC)-the seat of high cognitive functions-the lateral hypothalamus and the periaqueductal grey (PAG) have been recognized in the past, the precise targets of the descending fibres have not been identified. In the present study, viral tracer-transport experiments revealed neurons of the lateral (LO) and the ventrolateral (VLO) OFC (homologous to part of Area 13 in primates) to project to a circumscribed region in the ventrolateral hypothalamus, namely, the horizontally oriented, cylindrical parvalbumin- and Foxb1-expressing (parvafox) nucleus. The fine collaterals stem from coarse axons in the internal capsule and form excitatory synapses specifically with neurons of the parvafox nucleus, avoiding the rest of the hypothalamus. In its further caudal course, this contingent of LO/VLO-axons projects collaterals to the Su3- and the PV2 nuclei, which lie ventral to the aqueduct in the (PAG), where the terminals fields overlap those deriving from the parvafox nucleus itself. The targeting of the parvafox nucleus by the LO/VLO-projections, and the overlapping of their terminal fields within the PAG, suggest that the two cerebral sites interact closely. An involvement of this LO/VLO-driven circuit in the somatic manifestation of behavioural events is conceivable.


Assuntos
Região Hipotalâmica Lateral/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Genes Reporter , Região Hipotalâmica Lateral/metabolismo , Região Hipotalâmica Lateral/ultraestrutura , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico/métodos , Parvalbuminas/genética , Parvalbuminas/metabolismo , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/ultraestrutura , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/ultraestrutura , Ratos Wistar , Proteínas Recombinantes de Fusão/metabolismo
4.
Front Behav Neurosci ; 12: 146, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30072881

RESUMO

The calcium-binding protein parvalbumin (PV) is a recognized marker of short-axon GABA-ergic neurons in the cortex and the hippocampus. However in addition, PV is expressed by excitatory, glutamatergic neurons in various areas of the brain and spinal cord. Depending on the location of these neurons, loading of their synaptic vesicles with glutamate is mediated by either of three vesicular glutamate transporters (VGlut): VGlut1, VGlut2, or VGlut3. Driven by our interest in one of these glutamatergic/PV-expressing cell clusters-the lateral hypothalamic parvafox nucleus-we investigated the functions of this population of neurons by the selective deletion of VGlut2 expression in PV-expressing cells according to the Cre/Lox-approach. PV-Cre;VGlut2-Lox mutant mice are phenotypically characterized by deficits in locomotion and vocalization, by a decreased thermal nociception, and by an increased social dominance. We conducted a search of the Allen Brain Atlas for regions that might co-express the genes encoding PV and VGlut2, and that might thus contribute to the manifestation of the observed phenotypes. Our survey revealed several structures that could contribute to the deficits in locomotion and vocalization, such as the red, the subthalamic and the deep cerebellar nuclei. It also disclosed that a shift in the balance of afferental glutamatergic neurotransmission to the periaqueductal gray matter might be accountable for the decrease in sensitivity to pain and for the increase in social dominance. As a whole, this study broadens the state of knowledge about PV-expressing excitatory neurons.

5.
J Comp Neurol ; 520(4): 798-815, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22020694

RESUMO

In the lateral hypothalamus, groups of functionally related cells tend to be widely scattered rather than confined to discrete, anatomically distinct units. However, by using parvalbumin (PV)-specific antibodies, a solitary, compact cord of PV-immunoreactive cells (the PV1-nucleus) has been identified in the ventrolateral tuberal hypothalamus in various species. Here we describe the topography, the chemo-, cyto-, and myeloarchitectonics, and the ultrastructure of this PV1-nucleus in rodents. The PV1-nucleus is located within the ventrolateral division of the medial forebrain bundle. In the horizontal plane, it has a length of 1 mm in mice and 2 mm in rats. PV-immunoreactive perikarya fall into two distinct size categories and number (~800 in rats and ~400 in mice). They are intermingled with PV-negative neurons and coarse axons of the medial forebrain bundle, some of which are PV-positive. Symmetric and asymmetric synapses, as well as PV-positive and PV-negative fiber endings, terminate on the perikarya of both PV-positive and PV-negative neurons. PV-positive neurons of the PV1-nucleus express glutamate, not γ-aminobutyric acid (GABA), the neurotransmitter that is usually associated with PV-containing nerve cells. Although we could not find evidence that PV1 neurons express either catecholamines or known neuropeptides, they sometimes are interspersed with the fibers and terminals of such cells. From its analogous topographical situation, the PV1-nucleus could correspond to the lateral tuberal nucleus in humans. We anticipate that the presence of the marker protein PV in the PV1-nucleus of the rodent hypothalamus will facilitate future studies relating to the connectivity, transcriptomics, and function of this entity.


Assuntos
Região Hipotalâmica Lateral/anatomia & histologia , Parvalbuminas/metabolismo , Animais , Anticorpos/análise , Calbindina 2 , Calbindinas , Contagem de Células , Circulação Cerebrovascular/fisiologia , Feminino , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Região Hipotalâmica Lateral/citologia , Região Hipotalâmica Lateral/ultraestrutura , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Neurônios/ultraestrutura , Neuropeptídeos/metabolismo , Orexinas , Lectinas de Plantas , Ratos , Ratos Wistar , Receptores de N-Acetilglucosamina , Proteína G de Ligação ao Cálcio S100/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Dev Biol ; 299(2): 530-42, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16979619

RESUMO

In all metazoans, the expression of group B HMG domain Sox transcription factors is associated with the earliest stages of CNS development. In Drosophila, SoxNeuro (SoxN) is involved in dorso-ventral patterning of the neuroectoderm, and in the formation and segregation of neuroblasts. In this report, we show that SoxN expression persists in a subset of neurons and glial cells of the ventral nerve cord at embryonic stages 15/16. In an attempt to address SoxN function in late stages of CNS development, we have used a chromatin immunoprecipitation approach to isolate genomic regions bound in vivo by SoxN. We identified several genes involved in the regulation of axon scaffolding as potential direct target genes of SoxN, including beat1a, semaphorin2a, fasciclin2, longitudinal lacking and tailup/islet. We present genetic evidence for a direct involvement of SoxN in axonal patterning. Indeed, overexpressing a transcriptionally hyperactive mutated SoxN protein in neurons results in specific defects in axon scaffolding, which are also observed in transheterozygous combinations of SoxN null mutation and mutations in its target genes.


Assuntos
Axônios/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Fatores de Transcrição/fisiologia , Animais , Padronização Corporal , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Imunoprecipitação da Cromatina , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/genética , Mutação , Neuroglia/fisiologia , Neurônios/fisiologia , Fatores de Transcrição SOX , Fatores de Transcrição/genética
8.
Development ; 132(8): 1895-905, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15790965

RESUMO

Functional conservation of enhancers among evolutionarily diverged organisms is a powerful way to identify basic regulatory circuits and key developmental regulators. This is especially applicable to Crystallin genes. Despite unexpected heterogeneity and diversity in their DNA sequences, many studies have revealed that most of the Crystallin genes are regulated by a relatively small set of developmentally important transcription factors. The chicken delta1-crystallin is one of the best-characterized Crystallin genes. Its lens-specific regulation is governed by a 30 bp long DC5 fragment present in the third intron of the gene. DC5 contains PAX6 and SOX2 binding sites, and its activity depends on the cooperative binding of these two transcription factors. To test the idea that Pax6 and Sox2, together with the DC5 enhancer, could form a basic regulatory circuit functional in distantly related animals, we introduced the DC5 fragment into Drosophila and studied its activation pattern and regulation. The results show that the DC5 enhancer is not only active in the compound eye but, remarkably, is specifically active in those cells responsible for Crystallin secretion in Drosophila, i.e. the cone cells. However, regulation of the DC5 enhancer is carried out not by Pax6, but by Pax2 (D-Pax2; shaven--FlyBase) in combination with the Sox2 homologue SoxN. Both proteins (D-PAX2 and SOXN) bind cooperatively to the DC5 fragment and activate the enhancer synergistically. As PAX6 and PAX2 proteins derive from the same ancestor, we propose that during evolution Pax6 function in vertebrate lens development was retained by Pax2 in Drosophila.


Assuntos
Galinhas/genética , Drosophila/metabolismo , Elementos Facilitadores Genéticos/genética , Evolução Molecular , Regulação da Expressão Gênica , Células Fotorreceptoras de Invertebrados/metabolismo , delta-Cristalinas/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Fluorescência , Componentes do Gene , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fatores de Transcrição SOX , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
9.
Mol Biol Cell ; 16(6): 2660-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15788563

RESUMO

Sry high mobility group (HMG) box (Sox) transcription factors are involved in the development of central nervous system (CNS) in all metazoans. Little is known on the molecular mechanisms that regulate their transcriptional activity. Covalent posttranslational modification by small ubiquitin-like modifier (SUMO) regulates several nuclear events, including the transcriptional activity of transcription factors. Here, we demonstrate that SoxNeuro, an HMG box-containing transcription factor involved in neuroblast formation in Drosophila, is a substrate for SUMO modification. SUMOylation assays in HeLa cells and Drosophila S2 cells reveal that lysine 439 is the major SUMO acceptor site. The sequence in SoxNeuro targeted for SUMOylation, IKSE, is part of a small inhibitory domain, able to repress in cis the activity of two adjacent transcriptional activation domains. Our data show that SUMO modification represses SoxNeuro transcriptional activity in transfected cells. Overexpression in Drosophila embryos of a SoxN form that cannot be targeted for SUMOylation strongly impairs the development of the CNS, suggesting that SUMO modification of SoxN is crucial for regulating its activity in vivo. Finally, we present evidence that SUMO modification of group B1 Sox factors was conserved during evolution, because Sox3, the human counterpart of SoxN, is also negatively regulated through SUMO modification.


Assuntos
Sistema Nervoso Central/embriologia , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/genética , Proteína SUMO-1/metabolismo , Fatores de Transcrição/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Arginina/metabolismo , Sequência Conservada , Proteínas de Ligação a DNA/química , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila/química , Embrião não Mamífero , Evolução Molecular , Genes Reporter , Células HeLa , Proteínas de Grupo de Alta Mobilidade/química , Humanos , Imuno-Histoquímica , Luciferases/metabolismo , Lisina/química , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Fatores de Transcrição SOX , Fatores de Transcrição SOXB1 , Proteína SUMO-1/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Fatores de Transcrição/química , Transcrição Gênica
10.
Magn Reson Imaging ; 22(7): 921-8, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15288132

RESUMO

We re-analyzed the functional magnetic resonance imaging data from a study involving awake, adult, human volunteers in order to examine the influence of vascular density on the blood oxygenation level-dependent (BOLD) response. We employed a flashed and reversing stimulus paradigm where the latter stimulated twice the number of receptive fields and with it doubled the neuronal metabolic load (CMRO2) compared to the former stimulus. The blood flow increase to these stimuli was identical, so that differences in the BOLD response are due to differences in the oxygen extraction fraction. By comparing the BOLD response in human striate cortex (V1) and its neighbor, extra-striate area V2 to the two stimuli, we were able to determine the influence of the higher vascular density of striate cortex on the BOLD response. In striate cortex, the extent of activation, as measured by the number of activated voxels, was larger for the flashed than for the reversing stimulus. In extra-striate area V2, no such difference in the extent of activation was noted. Gauging the local concentration of HbR using deltaR2*, we found it to be significantly lower for the flashed than for the reversing checkerboard. We estimated the HbR concentration in extra-striate area V2 to be double that of striate cortex independent of the stimulus presented. A frequency distribution of the deltaR2* values for the flashed and reversing checkerboard revealed a shift consistent with an increase in the HbR concentration between areas V1 and V2. The metabolically most demanding stimulus, the reversing checkerboard was associated with the highest HbR concentration and with the largest number of voxels with a negative BOLD response.


Assuntos
Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Consumo de Oxigênio/fisiologia , Oxigênio/sangue , Córtex Visual/irrigação sanguínea , Córtex Visual/metabolismo , Adulto , Feminino , Humanos , Modelos Lineares , Masculino , Estimulação Luminosa
11.
Magn Reson Imaging ; 22(7): 913-9, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15288131

RESUMO

We analyzed the functional MRI signal of 15 men and 15 women. All had been presented with a flashed and a reversing, radial checkerboard stimulus. We investigated both positive and negative blood oxygenation level-dependent (BOLD) responses. The extent of activation and the change in the neuronal activity were examined. The former, by counting the number of activated voxels, the latter by using deltaR2* as an indicator of the change in the local deoxyhemoglobin (HbR) concentration. We examined both the positive and the negative BOLD response. Positive BOLD response: The flashed checkerboard gave rise to a larger number of activated voxels than for the reversing checkerboard. The mean number of activated pixels did not differ between men and women. The peak deltaR2* was significantly larger to the flashed than the reversing checkerboard, but did not reveal a gender-related difference. We noted an attenuation of the BOLD signal amplitude with time. This attenuation was larger in women than in men. Negative BOLD response: The attenuation was also larger for the flashed than the reversing stimulus and more pronounced in the chromatic contrast compared to the luminance contrast stimulus. The extent of activation was larger for the flashed than the reversing checkerboard, but did not differ between the sexes. The deltaR2* for the chromatic contrast checkerboard was larger in men than in women. No other significant differences were found. We conclude that the difference in the extent of activation between men and women is the result of our ability to detect activated pixels using statistical methods and not the result of a difference in the processing between the sexes.


Assuntos
Circulação Cerebrovascular , Imageamento por Ressonância Magnética/métodos , Consumo de Oxigênio/fisiologia , Córtex Visual/fisiologia , Feminino , Humanos , Masculino , Estimulação Luminosa , Fatores Sexuais , Córtex Visual/irrigação sanguínea
12.
Magn Reson Imaging ; 22(4): 441-50, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15120162

RESUMO

The predictions of the 'Linear Transfer Model' (LTM) have been tested only by modulating the frequency of the action potentials while keeping the size of the activated neuronal population constant. The LTM states that the blood oxygenation level-dependent contrast (BOLD) signal is directly proportional to the neuronal activity averaged over milliseconds or seconds. We examined the influence on the BOLD response, of manipulating the size of the activated neuronal population while maintaining the electrical discharge activity constant. We performed functional MR measurements on 30 awake, healthy adult volunteers (15 male and 15 female) using a flashed and reversing checkerboard. These stimuli induced the same vascular response and the same increase in the electrical discharge activity but varied in the size of the neuronal population being activated. The BOLD response measured by the extent of activation and the BOLD signal amplitude, was larger for the flashed than to the reversing checkerboard. An assessment of the local deoxyhemoglobin (HbR) concentration indicated that the neuronal activity was lower during the flashed checkerboard than the reversing checkerboard. Because the checkerboard associated with the lower neuronal activity yielded the larger number of activated voxels and the larger BOLD signal, our results run contrary to the predictions of the 'Linear Transfer Model' and for this reason we refer to them as paradoxical. Stimuli defined by luminance contrast or a chromatic contrast yielded identical results. We conclude that the 'LTM' may apply to stimuli that modulate the electrical discharge activity but not to stimuli that modulate the size of the activated neuronal population.


Assuntos
Potenciais Evocados Visuais , Oxigênio/sangue , Córtex Visual/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Valores de Referência
13.
Development ; 130(7): 1243-54, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12588842

RESUMO

Chromatin immunoprecipitation after UV crosslinking of DNA/protein interactions was used to construct a library enriched in genomic sequences that bind to the Engrailed transcription factor in Drosophila embryos. Sequencing of the clones led to the identification of 203 Engrailed-binding fragments localized in intergenic or intronic regions. Genes lying near these fragments, which are considered as potential Engrailed target genes, are involved in different developmental pathways, such as anteroposterior patterning, muscle development, tracheal pathfinding or axon guidance. We validated this approach by in vitro and in vivo tests performed on a subset of Engrailed potential targets involved in these various pathways. Finally, we present strong evidence showing that an immunoprecipitated genomic DNA fragment corresponds to a promoter region involved in the direct regulation of frizzled2 expression by engrailed in vivo.


Assuntos
DNA/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição , Animais , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica , Larva/metabolismo , Receptores de Superfície Celular/metabolismo
14.
Psychiatry Clin Neurosci ; 56(6): 637-42, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12485307

RESUMO

Haloperidol decanoate is widely used in the maintenance treatment of schizophrenia and other psychotic disorders, but knowledge concerning its pharmacokinetics at the injected region is very limited. Because the chemical structure of haloperidol contains fluorine, in vivo 19F-magnetic resonance (MR) spectroscopy (repetition time (TR) = 1 s) and chemical shift imaging (CSI; TR = 1 s, pixel size = 15 x 15 mm) were performed in schizophrenic patients who were treated with haloperidol decanoate (three men and one woman) to measure its diachronic change at the injection point and visualize its local distribution after intramuscular injection. 19F signals (T1 time = 365 ms) were obtained at the haloperidol decanoate-injected region. The decrease rate of the signal-to-noise ratio (SNR) by 19F-MR spectroscopy seemed large in comparison with that of the plasma haloperidol concentration. The distribution was clearly visualized by 19F-CSI for a few days after the injection, but after 1 week could no longer be seen. Although the slow-release characteristics of depot neuroleptics have been explained by the slow diffusion of esterified neuroleptics from the oil vehicle, this result may suggest that there are other mechanisms involved in maintaining the plasma haloperidol concentration. In vivo 19F-MR spectroscopy and CSI are potentially applicable for the pharmacokinetic analysis of haloperidol and other drugs containing fluorine in their structure.


Assuntos
Antipsicóticos/farmacocinética , Haloperidol/análogos & derivados , Haloperidol/farmacocinética , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia , Adulto , Antipsicóticos/administração & dosagem , Feminino , Flúor , Haloperidol/administração & dosagem , Humanos , Injeções Intramusculares , Isótopos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA