Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37661637

RESUMO

The receptor for advanced glycation end products (RAGE) is a protein of the immunoglobulin superfamily capable of regulating inflammation. Considering the role of this receptor in the initiation and establishment of neuroinflammation, and the limited understanding of the function of RAGE in the maintenance of this condition, this study describes the effects of RAGE inhibition in the brain, through an intranasal treatment with the antagonist FPS-ZM1, in an animal model of chronic neuroinflammation induced by acute intraperitoneal injection of lipopolysaccharide (LPS). Seventy days after LPS administration (2 mg/kg, i.p.), Wistar rats received, intranasally, 1.2 mg of FPS-ZM1 over 14 days. On days 88 and 89, the animals were submitted to the open-field test and were killed on day 90 after the intraperitoneal injection of LPS. Our results indicate that blockade of encephalic RAGE attenuates LPS-induced chronic neuroinflammation in different brain regions. Furthermore, we found that intranasal FPS-ZM1 administration reduced levels of gliosis markers, RAGE ligands, and α-synuclein in the substantia nigra pars compacta. Additionally, the treatment also reversed the increase in S100 calcium-binding protein B (RAGE ligand) in the cerebrospinal fluid and the cognitive-behavioral deficits promoted by LPS-less time spent in the central zone of the open-field arena (more time in the lateral zones), decreased total distance traveled, and increased number of freezing episodes. In summary, our study demonstrates the prominent role of RAGE in the maintenance of a chronic neuroinflammatory state triggered by a single episode of systemic inflammation and also points to possible future RAGE-based therapeutic approaches to treat conditions in which chronic neuroinflammation and increased α-synuclein levels could play a relevant role, such as in Parkinson's disease.

2.
Thromb J ; 21(1): 80, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507773

RESUMO

BACKGROUND: Because severe acute respiratory syndrome coronarivus 2 (SARS-CoV-2) leads to severe conditions and thrombus formation, evaluation of the coagulation markers is important in determining the prognosis and phenotyping of patients with COVID-19. METHODS: In a prospective study that included 213 COVID-19 patients admitted to the intensive care unit (ICU) the levels of antithrombin, C-reactive protein (CRP); factors XI, XII, XIII; prothrombin and D-dimer were measured. Spearman's correlation coefficient was used to assess the pairwise correlations between the biomarkers. Hierarchical and non-hierarchical cluster analysis was performed using the levels of biomarkers to identify patients´ phenotypes. Multivariate binary regression was used to determine the association of the patient´s outcome with clinical variables and biomarker levels. RESULTS: The levels of factors XI and XIII were significantly higher in patients with less severe COVID-19, while factor XIII and antithrombin levels were significantly associated with mortality. These coagulation biomarkers were associated with the in-hospital survival of COVID-19 patients over and above the core clinical factors on admission. Hierarchical cluster analysis showed a cluster between factor XIII and antithrombin, and this hierarchical cluster was extended to CRP in the next step. Furthermore, a non-hierarchical K-means cluster analysis was performed, and two phenotypes were identified based on the CRP and antithrombin levels independently of clinical variables and were associated with mortality. CONCLUSION: Coagulation biomarkers were associated with in-hospital survival of COVID-19 patients. Lower levels of factors XI, XII and XIII and prothrombin were associated with disease severity, while higher levels of both CRP and antithrombin clustered with worse prognosis. These results suggest the role of coagulation abnormalities in the development of COVID-19 and open the perspective of identifying subgroups of patients who would benefit more from interventions focused on regulating coagulation.

3.
J Neurochem ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37381043

RESUMO

The receptor for advanced glycation end products (RAGE) is a transmembrane receptor that belongs to the immunoglobulin superfamily and is extensively associated with chronic inflammation in non-transmissible diseases. As chronic inflammation is consistently present in neurodegenerative diseases, it was largely assumed that RAGE could act as a critical modulator of neuroinflammation in Parkinson's disease (PD), similar to what was reported for Alzheimer's disease (AD), where RAGE is postulated to mediate pro-inflammatory signaling in microglia by binding to amyloid-ß peptide. However, accumulating evidence from studies of RAGE in PD models suggests a less obvious scenario. Here, we review physiological aspects of RAGE and address the current questions about the potential involvement of this receptor in the cellular events that may be critical for the development and progression of PD, exploring possible mechanisms beyond the classical view of the microglial activation/neuroinflammation/neurodegeneration axis that is widely assumed to be the general mechanism of RAGE action in the adult brain.

4.
J Pain ; 22(8): 996-1013, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33774154

RESUMO

Chemotherapy-Induced Peripheral Neuropathy (CIPN) is a common, difficult-to-treat, and dose-limiting side effect associated with Oxaliplatin (OXA) treatment. In this study, we evaluated the effect of three antioxidants - namely N-acetylcysteine, α-lipoic acid and vitamin E - upon nociceptive parameters and antitumor efficacy of OXA in a tumor-bearing Swiss mice model. Oral treatment with antioxidants inhibited both mechanical and cold allodynia when concomitantly administrated with OXA (preventive protocol), as well as in animals with previously established CIPN (therapeutic protocol). OXA increased Reactive Oxygen Species (ROS) production and lipoperoxidation, and augmented the content of pro-inflammatory cytokines (IL-1ß and TNF-α) and expression of the astrocytic marker Gfap mRNA in the spinal cord. Antioxidants decreased ROS production and lipoperoxidation, and abolished neuroinflammation in OXA-treated animals. Toll-like receptor 4 (Tlr4) and inflammasome enzyme caspase-1/11 knockout mice treated with OXA showed reduced levels of pro-inflammatory cytokines (but not oxidative stress) in the spinal cord, which were associated with resistance to OXA-induced mechanical allodynia. Lastly, antioxidants affected neither antitumor activity nor hematological toxicity of OXA in vivo. The herein presented results are provocative for further evaluation of antioxidants in clinical management of chemotherapy-induced peripheral neuropathy. PERSPECTIVE: This study reports preventive and therapeutic efficacy of orally administrated antioxidants (N-acetylcysteine, α-lipoic-acid and Vitamin-E) in alleviating oxaliplatin-induced peripheral neuropathy in tumor-bearing mice. Antioxidants' anti-nociceptive effects are associated with inhibition of ROS-dependent neuroinflammation, and occur at no detriment of OXA antitumor activity, therefore indicating a translational potential of these compounds.


Assuntos
Antineoplásicos/efeitos adversos , Antioxidantes/farmacologia , Hiperalgesia , Neoplasias/tratamento farmacológico , Doenças Neuroinflamatórias , Oxaliplatina/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico , Medula Espinal , Animais , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/metabolismo , Receptor 4 Toll-Like
5.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 317-328, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30529222

RESUMO

Retinoic acid (RA) promotes differentiation in multiple neurogenic cell types by promoting gene reprogramming through retinoid receptors and also by inducing cytosolic signaling events. The nuclear RXR receptors are one of the main mediators of RA cellular effects, classically by joining the direct receptors of RA, the nuclear RAR receptors, in RAR/RXR dimers which act as transcription factors. Distinct RXR genes lead to RXRα, RXRß and RXRγ subtypes, but their specific roles in neuronal differentiation remain unclear. We firstly investigated both RXRs and RARs expression profiles during RA-mediated neuronal differentiation of human neuroblastoma cell line SH-SY5Y, and found varying levels of retinoid receptors transcript and protein contents along the process. In order to understand the roles of the expression of distinct RXR subtypes to RA signal transduction, we performed siRNA-mediated silencing of RXRα and RXRß during the first stages of SH-SY5Y differentiation. Our results showed that RXRα is required for RA-induced neuronal differentiation of SH-SY5Y cells, since its silencing compromised cell cycle arrest and prevented the upregulation of neuronal markers and the adoption of neuronal morphology. Besides, silencing of RXRα affected the phosphorylation of ERK1/2. By contrast, silencing of RXRß improved neurite extension and led to increased expression of tau and synaptophysin, suggesting that RXRß may negatively regulate neuronal parameters related to neurite outgrowth and function. Our results indicate distinct functions for RXR subtypes during RA-dependent neuronal differentiation and reveal new perspectives for studying such receptors as clinical targets in therapies aiming at restoring neuronal function.


Assuntos
Neuritos/metabolismo , Receptor X Retinoide alfa/fisiologia , Receptor X Retinoide beta/fisiologia , Animais , Pontos de Checagem do Ciclo Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Neuroblastoma/genética , Neuroblastoma/metabolismo , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Receptores do Ácido Retinoico/metabolismo , Receptores do Ácido Retinoico/fisiologia , Receptor X Retinoide alfa/metabolismo , Receptor X Retinoide beta/metabolismo , Receptores X de Retinoides , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional , Tretinoína/metabolismo , Tretinoína/farmacologia , Células Tumorais Cultivadas
6.
Nutrients ; 9(4)2017 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-28368329

RESUMO

Exercise training intensity is the major variant that influences the relationship between exercise, redox balance, and immune response. Supplement intake is a common practice for oxidative stress prevention; the effects of vitamin A (VA) on exercise training are not yet described, even though this molecule exhibits antioxidant properties. We investigated the role of VA supplementation on redox and immune responses of adult Wistar rats subjected to swimming training. Animals were divided into four groups: sedentary, sedentary + VA, exercise training, and exercise training + VA. Over eight weeks, animals were submitted to intense swimming 5 times/week and a VA daily intake of 450 retinol equivalents/day. VA impaired the total serum antioxidant capacity acquired by exercise, with no change in interleukin-1ß and tumor necrosis factor-α levels. In skeletal muscle, VA caused lipid peroxidation and protein damage without differences in antioxidant enzyme activities; however, Western blot analysis showed that expression of superoxide dismutase-1 was downregulated, and upregulation of superoxide dismutase-2 induced by exercise was blunted by VA. Furthermore, VA supplementation decreased anti-inflammatory interleukin-10 and heat shock protein 70 expression, important factors for positive exercise adaptations and tissue damage prevention. Our data showed that VA supplementation did not confer any antioxidative and/or protective effects, attenuating exercise-acquired benefits in the skeletal muscle.


Assuntos
Suplementos Nutricionais/efeitos adversos , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Interleucina-10/antagonistas & inibidores , Músculo Esquelético/metabolismo , Miosite/etiologia , Estresse Oxidativo , Vitamina A/efeitos adversos , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Western Blotting , Proteínas de Choque Térmico HSP70/metabolismo , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Interleucina-10/metabolismo , Peroxidação de Lipídeos , Masculino , Músculo Esquelético/enzimologia , Músculo Esquelético/imunologia , Miosite/sangue , Miosite/imunologia , Miosite/metabolismo , Oxirredutases/antagonistas & inibidores , Oxirredutases/química , Oxirredutases/metabolismo , Capacidade de Absorbância de Radicais de Oxigênio , Condicionamento Físico Animal/efeitos adversos , Distribuição Aleatória , Ratos Wistar
7.
Mol Neurobiol ; 54(9): 6903-6916, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27771902

RESUMO

Human neuroblastoma SH-SY5Y cells have been used as an in vitro model for neurodegenerative disorders such as Parkinson's disease and can be induced to a mature neuronal phenotype through retinoic acid (RA) differentiation. However, mechanisms of RA-induced differentiation remain unclear. Here, we investigate the role of reactive species (RS) on SH-SY5Y neuroblastoma cells under RA differentiation, using the antioxidant Trolox® as co-treatment. We found that RA treatment for 7 days reduced the cell number and proliferative capacity and induced the expression of adult catecholaminergic/neuronal markers such as tyrosine hydroxylase (TH), ß-III tubulin, and enolase-2. Evaluation of intracellular RS production by DCFH oxidation assay and quantification of cell non-enzymatic antioxidant activity by TRAP demonstrated that RA increases RS production. Furthermore, mitochondrial NADH oxidation showed to be inhibited under differentiation with RA. Cells subjected to co-treatment with antioxidant Trolox® demonstrated a remaining proliferative capacity and a decrease in the pro-oxidant state and RS production. Besides, antioxidant treatment restores the mitochondrial NADH oxidation. Importantly, Trolox® co-treatment inhibited the appearance of morphological characteristics such as neurite extension and branching, and decreased the expression of TH, ß-III tubulin, and enolase-2 after a seven-day differentiation with RA, indicating that RS production is a necessary step in this process. Trolox® also inhibited the phosphorylation of Akt and ERK1/2, which are involved in differentiation and survival, respectively, of these cells. Altogether, these data indicate the presence of a redox-dependent mechanism in SH-SY5Y RA-differentiation process and can be a useful insight to improve understanding of neuronal differentiation signaling.


Assuntos
Biomarcadores/metabolismo , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Neurônios/citologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tretinoína/farmacologia , Regulação para Cima/efeitos dos fármacos , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Appl Physiol Nutr Metab ; 40(12): 1253-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26566243

RESUMO

Exercise training induces reactive oxygen species production and low levels of oxidative damage, which are required for induction of antioxidant defenses and tissue adaptation. This process is physiological and essential to improve physical conditioning and performance. During exercise, endogenous antioxidants are recruited to prevent excessive oxidative stress, demanding appropriate intake of antioxidants from diet or supplements; in this context, the search for vitamin supplements that enhance the antioxidant defenses and improve exercise performance has been continuously increasing. On the other hand, excess of antioxidants may hinder the pro-oxidant signals necessary for this process of adaptation. The aim of this study was to investigate the effects of vitamin A supplementation (2000 IU/kg, oral) upon oxidative stress and parameters of pro-inflammatory signaling in lungs of rats submitted to aerobic exercise (swimming protocol). When combined with exercise, vitamin A inhibited biochemical parameters of adaptation/conditioning by attenuating exercise-induced antioxidant enzymes (superoxide dismutase and glutathione peroxidase) and decreasing the content of the receptor for advanced glycation end-products. Increased oxidative damage to proteins (carbonylation) and lipids (lipoperoxidation) was also observed in these animals. In sedentary animals, vitamin A decreased superoxide dismutase and increased lipoperoxidation. Vitamin A also enhanced the levels of tumor necrosis factor alpha and decreased interleukin-10, effects partially reversed by aerobic training. Taken together, the results presented herein point to negative effects associated with vitamin A supplementation at the specific dose here used upon oxidative stress and pro-inflammatory cytokines in lung tissues of rats submitted to aerobic exercise.


Assuntos
Suplementos Nutricionais/toxicidade , Pulmão/efeitos dos fármacos , Oxidantes/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Esforço Físico , Vitamina A/toxicidade , Animais , Glutationa Peroxidase/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-10/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Carbonilação Proteica/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Superóxido Dismutase/metabolismo , Natação , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
9.
Brain Behav Immun ; 43: 37-45, 2015 01.
Artigo em Inglês | MEDLINE | ID: mdl-25014011

RESUMO

Leishmaniasis is a parasitosis caused by several species of the genus Leishmania, an obligate intramacrophagic parasite. Although neurologic symptoms have been observed in human cases of leishmaniasis, the manifestation of neurodegenerative processes is poorly studied. The aim of the present work was to investigate if peripheral infection of BALB/c mice with Leishmania amazonensis affects tau phosphorylation and RAGE protein content in the brain, which represent biochemical markers of neurodegenerative processes observed in diseases with a pro-inflammatory component, including Alzheimer's disease and Down syndrome. Four months after a single right hind footpad subcutaneous injection of L. amazonensis, the brain cortex of BALB/c mice was isolated. Western blot analysis indicated an increase in tau phosphorylation (Ser(396)) and RAGE immunocontent in infected animals. Brain tissue TNF-α, IL-1ß, and IL-6 levels were not different from control animals; however, increased protein carbonylation, decreased IFN-γ levels and impairment in antioxidant defenses were detected. Systemic antioxidant treatment (NAC 20mg/kg, i.p.) inhibited tau phosphorylation and recovered IFN-γ levels. These data, altogether, indicate an association between impaired redox state, tau phosphorylation and RAGE up-regulation in the brain cortex of animals infected with L. amazonensis. In this context, it is possible that neurologic symptoms associated to chronic leishmaniasis are associated to disruptions in the homeostasis of CNS proteins, such as tau and RAGE, as consequence of oxidative stress. This is the first demonstration of alterations in biochemical parameters of neurodegeneration in an experimental model of Leishmania infection.


Assuntos
Encéfalo/parasitologia , Leishmania mexicana , Leishmaniose/metabolismo , Receptores Imunológicos/metabolismo , Proteínas tau/metabolismo , Animais , Encéfalo/metabolismo , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/fisiologia , Fosforilação , Receptor para Produtos Finais de Glicação Avançada , Regulação para Cima
10.
J Clin Biochem Nutr ; 55(2): 110-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25320458

RESUMO

Antioxidant, anti-glycation and anti-inflammatory activities of fresh and conserved peach fruits (Prunus persica L. Batsch) were compared. Fresh peach pulps, peels, preserve peach pulps and the preserve syrup were prepared at equal concentrations. Rat liver, kidney and brain cortex tissue slices were pre-incubated with peach samples, subjected to oxidative stress with FeSO4 and hydrogen peroxide. Fresh peach pulps and peel conferred higher protection against cytotoxicity and oxidative stress than preserve peach pulps in most tissues. Release of tumor necrosis factor-α and interleukin-1ß was also significantly decreased by Fresh peach pulps and peel, followed by preserve peach pulps. Total phenolic determination and HPLC analysis of carotenoids showed that the content of secondary metabolites in Fresh peach pulps and peel is significantly higher than in preserve peach pulps, while the syrup had only small or trace amounts of these compounds. Fresh peach pulps and Peel demonstrated high antioxidant and anti-inflammatory effects preventing against induced damage.

11.
J Nutr Biochem ; 25(12): 1282-95, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25287815

RESUMO

The present study was elaborated to comparatively evaluate the preventive effect of different peach-derived products obtained from preserved fruits (Syrup and Preserve Pulp Peach [PPP]) and from fresh peels and pulps (Peel and Fresh Pulp Peach [FPP]) in a model of liver/renal toxicity and inflammation induced by carbon tetrachloride (CCl4) in rats. Tissue damage (carbonyl, thiobarbituric acid reactive species and sulfhydril), antioxidant enzymes activity (catalase and superoxide dismutase) and inflammatory parameters [tumor necrosis factor (TNF)-α and interleukin (IL)-1ß levels, and receptor for advanced glycation end-products (RAGE) and nuclear factor (NF)κB-p65 immunocontent] were investigated. Our findings demonstrated that Peel, PPP and FPP (200 or 400 mg/kg) daily administration by oral gavage for 30 days conferred a significant protection against CCl4-induced antioxidant enzymes activation and, most importantly, oxidative damage to lipids and proteins as well as blocked induction of inflammatory mediators such as TNF-α, IL-1ß, RAGE and NFκB. This antioxidant/anti-inflammatory effect seems to be associated with the abundance of carotenoids and polyphenols present in peach-derived products, which are enriched in fresh-fruit-derived preparations (Peel and FPP) but are also present in PPP. The Syrup - which was the least enriched in antioxidants - displayed no protective effect in our experiments. These effects cumulated in decreased levels of transaminases and lactate dehydrogenase leakage into serum and maintenance of organ architecture. Therefore, the herein presented results show evidence that supplementation with peach products may be protective against organ damage caused by oxidative stress, being interesting candidates for production of antioxidant-enriched functional foods.


Assuntos
Tetracloreto de Carbono/efeitos adversos , Frutas/química , Estresse Oxidativo/efeitos dos fármacos , Preparações de Plantas/farmacologia , Prunus/química , Alanina Transaminase/sangue , Animais , Antioxidantes/farmacologia , Aspartato Aminotransferases/sangue , Bilirrubina/sangue , Glicemia/metabolismo , Carotenoides/análise , Suplementos Nutricionais , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-1beta/sangue , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , NF-kappa B/sangue , Fitoterapia/métodos , Polifenóis/análise , Ratos , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/sangue , Superóxido Dismutase/sangue , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fator de Necrose Tumoral alfa/sangue
12.
Anticancer Agents Med Chem ; 14(8): 1128-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25115457

RESUMO

Cellular and molecular mechanisms related to lung cancer have been extensively studied in recent years, but the availability of effective treatments is still scarce. Hecogenin acetate, a natural saponin presenting a wide spectrum of reported pharmacological activities, has been previously evaluated for its anticancer/antiproliferative activity in some in vivo and in vitro models. Here, we investigated the effects of hecogenin acetate in a human lung cancer cell line. A549 non-small lung cancer cells were exposed to different concentrations of hecogenin acetate and reactive species production, ERK1/2 activation, matrix metalloproteinase expression, cell cycle arrest and cell senescence parameters were evaluated. Hecogenin acetate significantly inhibited increase in intracellular reactive species production induced by H2O2. In addition, hecogenin acetate blocked ERK1/2 phosphorylation and inhibited the increase in MMP-2 caused by H2O2. Treatment with hecogenin acetate induced G0/G1-phase arrest at two concentrations (75 and 100 µM, 74% and 84.3% respectively), and increased the staining of senescence-associated ß -galactosidase positive cells. These data indicate that hecogenin acetate is able to exert anti-cancer effects by modulating reactive species production, inducing cell cycle arrest and senescence and also modulating ERK1/2 phosphorylation and MMP-2 production.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Senescência Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Espécies Reativas de Oxigênio/metabolismo , Compostos de Espiro/farmacologia , Esteroides/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Invasividade Neoplásica/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA