Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807392

RESUMO

The synthesis of π-conjugated polymers via an environmentally friendly procedure is generally challenging. Herein, we describe the synthesis of divanillin-based polyazomethines, which are derived from a potentially bio-based monomer. The polymerization is performed in 5 min under microwave irradiation without any metallic catalyst, with water as the only by-product. The vanillin-based polyazomethines were characterized by SEC, TGA, and UV-Vis spectroscopy. Model compounds were designed and characterized by X-ray diffraction and UV-Vis spectroscopy. The structure/properties study of vanillin-based azomethines used as models allowed us to unequivocally confirm the E configuration and to highlight the cross-conjugated nature of divanillin-based polymers.


Assuntos
Benzaldeídos , Polímeros , Benzaldeídos/química , Catálise , Polimerização , Polímeros/química
2.
ACS Omega ; 5(10): 5176-5181, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32201805

RESUMO

Divanillin was synthesized in high yield and purity using Laccase from Trametes versicolor. It was then polymerized with benzene-1,4-diamine and 2,7-diaminocarbazole to form polyazomethines. Polymerizations were performed under microwave irradiation and without transition-metal-based catalysts. These biobased conjugated polyazomethines present a broad fluorescence spectrum ranging from 400 to 600 nm. Depending on the co-monomer used, polyazomethines with molar masses of around 10 kg·mol-1 and with electronic gaps ranging from 2.66 to 2.85 eV were obtained. Furthermore, time-dependent density functional theory (TD-DFT) calculations were performed to corroborate the experimental results.

3.
J Colloid Interface Sci ; 548: 275-283, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31004960

RESUMO

Coacervation is a phase separation process involving two aqueous phases, one solute-phase and one solute-poor phase. It is frequently observed among oppositely-charged polyelectrolyte systems. In this study, we focus on self-coacervation involving a single polymer chain and investigate its potential for encapsulation applications. Negatively charged polyacrylic acid polymer chains were partially cationized using diamine and carbodiimide chemistry affording ampholytes, named PAA-DA, with tunable charge ratio. When dispersed in water, at pH 7, PAA-DA was soluble but a phase separation occurs when decreasing pH close to the isoelectric point. Coacervation is found only for a given amine-to-acid ratio otherwise precipitation is observed. Increasing the pH above 4 yielded progressive destruction of the coacervates droplets via the formation of vacuoles within droplets and subsequent full homogeneous redispersion of PAA-DA in water. However, addition of calcium allowed increasing the coacervate droplet stability upon increasing the pH to 7 as the divalent ion induced gelation within droplets. Moreover, the coacervate droplets present the ability to spontaneously sequestrate a broad panel of entities, from small molecules to macromolecules or colloids, with different charges, size and hydrophobicity. Thanks to the reversible character of the coacervates, triggered-release could be easily achieved, either by varying the pH or by removing calcium ions in the case of calcium-stabilized coacervates. Self-coacervation presents the advantage of pathway-independent preparation, offering a real output interest in pharmacy, water treatment, food science or diagnostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA