Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
RSC Adv ; 14(17): 11706-11714, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38605887

RESUMO

A few seconds flash photopyrolysis is used as efficient screening tool for the investigation of selected biomass in producing syngas, hydrogen and biochar. This innovative approach allowed rapid pyrolysis of the biomass, which was followed by a precise gas analysis and quantification, using Mass Spectrometry (MS). The analysis of the gas composition from three distinct biomass wastes in this study provides new insights into their thermochemical characteristics, expanding thus our knowledge of the potential of the selected biomass resources for the production of carbon, syngas, and/or hydrogen-rich gas production. This enhanced characterization revealed the potential of biomass transformation in contributing to innovative green energy sustainable solutions.

2.
Angew Chem Int Ed Engl ; 62(40): e202308181, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37490019

RESUMO

Biofilm-associated infections, which are able to resist antibiotics, pose a significant challenge in clinical treatments. Such infections have been linked to various medical conditions, including chronic wounds and implant-associated infections, making them a major public-health concern. Early-detection of biofilm formation offers significant advantages in mitigating adverse effects caused by biofilms. In this work, we aim to explore the feasibility of employing a novel wireless sensor for tracking both early-stage and matured-biofilms formed by the medically relevant bacteria Staphylococcus aureus and Pseudomonas aeruginosa. The sensor utilizes electrochemical reduction of an AgCl layer bridging two silver legs made by inkjet-printing, forming a part of near-field-communication tag antenna. The antenna is interfaced with a carbon cloth designed to promote the growth of microorganisms, thereby serving as an electron source for reduction of the resistive AgCl into a highly-conductive Ag bridge. The AgCl-Ag transformation significantly alters the impedance of the antenna, facilitating wireless identification of an endpoint caused by microbial growth. To the best of our knowledge, this study for the first time presents the evidence showcasing that electrons released through the actions of bacteria can be harnessed to convert AgCl to Ag, thus enabling the wireless, battery-less, and chip-less early-detection of biofilm formation.


Assuntos
Biofilmes , Staphylococcus aureus , Antibacterianos/farmacologia , Bactérias , Pseudomonas aeruginosa
3.
Chem Sci ; 13(6): 1774-1779, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35282612

RESUMO

Biomass splitting into gases and solids using flash light irradiation is introduced as an efficient photo-thermal process to photo-pyrolyze dried natural biomass powders to valuable syngas and conductive porous carbon (biochar). The photo-thermal reactions are carried out in a few milliseconds (14.5 ms) by using a high-power Xenon flash lamp. Here, dried banana peel is used as a model system and each kg of dried biomass generates ca. 100 L of hydrogen and 330 g of biochar. Carbon monoxide and some light hydrocarbons are also generated providing a further increase in the high heating value (HHV) with an energy balance output of 4.09 MJ per kg of dried biomass. Therefore, biomass photo-pyrolysis by flash light irradiation is proposed as a new approach not only to convert natural biomass wastes into energy, such as hydrogen, but also for carbon mitigation, which can be stored or used as biochar.

4.
Chem Commun (Camb) ; 58(24): 3965-3968, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35253028

RESUMO

The visible light driven water oxidation reaction (WOR) by the organic electron acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (TCNQF4) was studied at the water|butyronitrile interface. The WOR was performed at neutral pH, and without any metal or organometallic catalysts. The oxygen generated was measured by GC-MS and cyclic voltammetry, and the protons produced were monitored by measuring the aqueous pH. This work opens novel perspectives for water photo-oxidation in liquids and artificial photosynthesis.


Assuntos
Oxigênio , Água , Luz , Oxirredução , Fotossíntese
5.
Angew Chem Int Ed Engl ; 61(13): e202112218, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-34806284

RESUMO

Wound biofilms represent a particularly challenging problem in modern medicine. They are increasingly antibiotic resistant and can prevent the healing of chronic wounds. However, current treatment and diagnostic options are hampered by the complexity of the biofilm environment. In this review, we present new chemical avenues in biofilm sensors and new materials to treat wound biofilms, offering promise for better detection, chemical specificity, and biocompatibility. We briefly discuss existing methods for biofilm detection and focus on novel, sensor-based approaches that show promise for early, accurate detection of biofilm formation on wound sites and that can be translated to point-of-care settings. We then discuss technologies inspired by new materials for efficient biofilm eradication. We focus on ultrasound-induced microbubbles and nanomaterials that can both penetrate the biofilm and simultaneously carry active antimicrobials and discuss the benefits of those approaches in comparison to conventional methods.


Assuntos
Infecção dos Ferimentos , Antibacterianos/farmacologia , Biofilmes , Humanos , Cicatrização , Infecção dos Ferimentos/tratamento farmacológico
6.
ACS Meas Sci Au ; 2(6): 576-583, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36785775

RESUMO

Scanning electrochemical microscopy (SECM) is one of the scanning probe techniques that has attracted considerable attention because of its ability to interrogate surface morphology or electrochemical reactivity. However, the quality of SECM images generally depends on the sizes of the electrodes and many uncontrollable factors. Furthermore, manipulating fragile glass ultramicroelectrodes and blurred images sometimes frustrate researchers. To overcome the challenges of modern SECM, we developed novel soft gold probes and then established the AI-assisted methodology for image fusion. A novel gold microelectrode probe with high softness was developed to scan fragile samples. The distribution of EGFR (protein biomarker) in oral cancer was investigated. Then, we fused the optical microscopic and SECM images to enhance the image quality using Matlab software. However, thousands of fused images were generated by changing the parameters for image fusion, which is annoying for researchers. Thus, a deep learning model was built to select the best-fused images according to the contrast and clarity of the fused images. Therefore, the quality of the SECM images was improved using a novel soft probe and combining the image fusion technique. In the future, a new scanning probe with AI-assisted fused SECM image processing may be interpreted more preciously and contribute to the early detection of cancers.

7.
Angew Chem Weinheim Bergstr Ger ; 134(13): e202112218, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38505642

RESUMO

Wound biofilms represent a particularly challenging problem in modern medicine. They are increasingly antibiotic resistant and can prevent the healing of chronic wounds. However, current treatment and diagnostic options are hampered by the complexity of the biofilm environment. In this review, we present new chemical avenues in biofilm sensors and new materials to treat wound biofilms, offering promise for better detection, chemical specificity, and biocompatibility. We briefly discuss existing methods for biofilm detection and focus on novel, sensor-based approaches that show promise for early, accurate detection of biofilm formation on wound sites and that can be translated to point-of-care settings. We then discuss technologies inspired by new materials for efficient biofilm eradication. We focus on ultrasound-induced microbubbles and nanomaterials that can both penetrate the biofilm and simultaneously carry active antimicrobials and discuss the benefits of those approaches in comparison to conventional methods.

8.
JACS Au ; 1(5): 598-611, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34056635

RESUMO

Skin problems are often overlooked due to a lack of robust and patient-friendly monitoring tools. Herein, we report a rapid, noninvasive, and high-throughput analytical chemical methodology, aiming at real-time monitoring of skin conditions and early detection of skin disorders. Within this methodology, adhesive sampling and laser desorption ionization mass spectrometry are coordinated to record skin surface molecular mass in minutes. Automated result interpretation is achieved by data learning, using similarity scoring and machine learning algorithms. Feasibility of the methodology has been demonstrated after testing a total of 117 healthy, benign-disordered, or malignant-disordered skins. Remarkably, skin malignancy, using melanoma as a proof of concept, was detected with 100% accuracy already at early stages when the lesions were submillimeter-sized, far beyond the detection limit of most existing noninvasive diagnosis tools. Moreover, the malignancy development over time has also been monitored successfully, showing the potential to predict skin disorder progression. Capable of detecting skin alterations at the molecular level in a nonsurgical and time-saving manner, this analytical chemistry platform is promising to build personalized skin care.

9.
J Am Chem Soc ; 143(20): 7671-7680, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33978400

RESUMO

Emulsification of immiscible two-phase fluids, i.e., one condensed phase dispersed homogeneously as tiny droplets in an outer continuous medium, plays a key role in medicine, food, chemical separations, cosmetics, fabrication of micro- and nanoparticles and capsules, and dynamic optics. Herein, we demonstrate that water clusters/droplets can be formed in an organic phase via the spontaneous assembling of ionic bilayers. We term these clusters ionosomes, by analogy with liposomes where water clusters are encapsulated in a bilayer of lipid molecules. The driving force for the generation of ionosomes is a unique asymmetrical electrostatic attraction at the water/oil interface: small and more mobile hydrated ions reside in the inner aqueous side, which correlate tightly with the lipophilic bulky counterions in the adjacent outer oil side. These ionosomes can be formed through electrochemical (using an external power source) or chemical (by salt distribution) polarization at the liquid-liquid interface. The charge density of the cations, the organic solvent, and the synergistic effects between tetraethylammonium and lithium cations, all affecting the formation of ionosomes, were investigated. These results clearly prove that a new emulsification strategy is developed providing an alternative and generic platform, besides the canonical emulsification procedure with either ionic or nonionic surfactants as emulsifiers. Finally, we also demonstrate the detection of individual ionosomes via single-entity electrochemistry.

10.
Chemphyschem ; 22(13): 1352-1360, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-33909320

RESUMO

H2 O2 is a versatile chemical and can be generated by the oxygen reduction reaction (ORR) in proton donor solution in molecular solvents or room temperature ionic liquids (IL). We investigated this reaction at interfaces formed by eleven hydrophobic ILs and acidic aqueous solution as a proton source with decamethylferrocene (DMFc) as an electron donor. H2 O2 is generated in colorimetrically detectable amounts in biphasic systems formed by alkyl imidazolium hexafluorophosphate or tetraalkylammonium bis(trifluoromethylsulfonyl)imide ionic liquids. H2 O2 fluxes were estimated close to liquid|liquid interface by scanning electrochemical microscopy (SECM). Contrary to the interfaces formed by hydrophobic electrolyte solution in a molecular solvent, H2 O2 generation is followed by cation expulsion to the aqueous phase. Weak correlation between the H2 O2 flux and the difference between DMFc/DMFc+ redox potential and 2 electron ORR standard potential indicates kinetic control of the reaction.

11.
Mikrochim Acta ; 188(2): 36, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-33420843

RESUMO

An amperometric sensor based on an inkjet-printed graphene electrode (IPGE) modified with amine-functionalized montmorillonite (Mt-NH2) for the electroanalysis and quantification of gentisic acid (GA) has been developed. The organoclay used as IPGE modifier was prepared and characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, CHN elemental analysis, and thermogravimetry. The electrochemical features of the Mt-NH2/IPGE sensor were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The sensor exhibited charge selectivity ability which was exploited for the electrochemical oxidation of GA. The GA amperometric response was high in acidic medium (Brinton-Robinson buffer, pH 2) due to favorable interactions between the protonated amine groups and the negatively charged GA. Kinetic studies were also performed by cyclic voltammetry, and the obtained electron transfer rate constant of 11.3 s-1 indicated a fast direct electron transfer rate of GA to the electrode. An approach using differential pulse voltammetry was then developed for the determination of GA (at + 0.233 V vs. a pseudo Ag/Ag+ reference electrode), and under optimized conditions, the sensor showed high sensitivity, a wide working linear range from 1 to 21 µM (R2 = 0.999), and a low detection limit of 0.33 µM (0.051 ± 0.01 mg L-1). The proposed sensor was applied to quantify GA in a commercial red wine sample. The simple and rapid method developed using a cheap clay material could be employed for the determination of various phenolic acids.


Assuntos
Bentonita/química , Gentisatos/análise , Grafite/química , Técnicas Eletroquímicas/métodos , Eletrodos , Gentisatos/química , Limite de Detecção , Oxirredução , Impressão , Vinho/análise
12.
JACS Au ; 1(12): 2294-2302, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34977899

RESUMO

Sustainable water oxidation requires low-cost, stable, and efficient redox couples, photosensitizers, and catalysts. Here, we introduce the in situ self-assembly of metal-atom-free organic-based semiconductive structures on the surface of carbon supports. The resulting TTF/TTF•+@carbon junction (TTF = tetrathiafulvalene) acts as an all-in-one highly stable redox-shuttle/photosensitizer/molecular-catalyst triad for the visible-light-driven water oxidation reaction (WOR) at neutral pH, eliminating the need for metallic or organometallic catalysts and sacrificial electron acceptors. A water/butyronitrile emulsion was used to physically separate the photoproducts of the WOR, H+ and TTF, allowing the extraction and subsequent reduction of protons in water, and the in situ electrochemical oxidation of TTF to TTF•+ on carbon in butyronitrile by constant anode potential electrolysis. During 100 h, no decomposition of TTF was observed and O2 was generated from the emulsion while H2 was constantly produced in the aqueous phase. This work opens new perspectives for a new generation of metal-atom-free, low-cost, redox-driven water-splitting strategies.

13.
Chemphyschem ; 21(24): 2630-2633, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33166015

RESUMO

H2 may be evolved biphasically using a polarised liquid|liquid interface, acting as a "proton pump", in combination with organic soluble metallocenes as electron donors. Sustainable H2 production requires methodologies to recycle the oxidised donor. Herein, the photo-recycling of decamethylferrocenium cations (DcMFc+ ) using aqueous core-shell semiconductor CdSe@CdS nanoparticles is presented. Negative polarisation of the liquid|liquid interface is required to extract DcMFc+ to the aqueous phase. This facilitates the efficient capture of electrons by DcMFc+ on the surface of the photo-excited CdSe@CdS nanoparticles, with hydrophobic DcMFc subsequently partitioning back to the organic phase and resetting the system. TiO2 (P25) and CdSe semiconductor nanoparticles failed to recycle DcMFc+ due to their lower conduction band energy levels. During photo-recycling, CdS (on CdSe) may be self-oxidised and photo-corrode, instead of water acting as the hole scavenger.

14.
Chemistry ; 26(32): 7250-7257, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32267982

RESUMO

The MnIII /MnII redox couple with a standard potential of +1.51 V versus the standard hydrogen electrode (SHE) has attracted interest for the design of V/Mn redox flow batteries (RFBs). However, MnIII disproportionation leads to a loss of capacity, an increase in pressure drop, and electrode passivation caused by the formation of MnO2 particles during battery cycling. In this work, the influence of TiIV or/and VV on MnIII stability in acidic conditions is studied by formulating four different electrolytes in equimolar ratios (Mn, Mn/Ti, Mn/V, Mn/V/Ti). Voltammetry studies have revealed an ECi process for MnII oxidation responsible for the electrode passivation. SEM and XPS analysis demonstrate that the nature and morphology of the passivating oxides layer depend strongly on the electrolyte composition. Spectroelectrochemistry highlights the stabilization effect of TiIV and VV on MnIII . At a comparable pH, the amount of MnIII loss through disproportionation is decreased by a factor of 2.5 in the presence of TiIV or/and VV . Therefore, VV is an efficient substitute for TiIV to stabilize the MnIII electrolyte for RFB applications.

15.
Chem Sci ; 11(38): 10304-10312, 2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34094294

RESUMO

The mechanism by which interfaces in solution can be polarised depends on the nature of the charge carriers. In the case of a conductor, the charge carriers are electrons and the polarisation is homogeneous in the plane of the electrode. In the case of an insulator covered by ionic moieties, the polarisation is inhomogeneous and discrete in the plane of the interface. Despite these fundamental differences, these systems are usually treated in the same theoretical framework that relies on the Poisson-Boltzmann equation for the solution side. In this perspective, we show that interfaces polarised by discrete charge distributions are rather ubiquitous and that their associated potential drop significantly differs from those of conductor-electrolyte interfaces. We show that these configurations, spanning liquid-liquid interfaces, charged silica-water interfaces, metal oxide interfaces, supercapacitors, ion-exchange membranes and even biological membranes can be uniformly treated under a common "Discrete Helmholtz" model where the discrete charges are compensated by a single layer of correlated counter-ions, thereby generating a sharp potential drop at the interface.

16.
Chem Sci ; 11(39): 10807-10813, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34094335

RESUMO

The distribution of electrolytes in an electric field usually relies on theories based on the Poisson-Boltzmann formalism. These models predict that, in the case of a metallic electrode, ionic charges screen the electrode potential, leading to concentration-dependent ion distributions. This theoretical framework was first applied at solid-liquid interfaces and then transposed to soft interfaces. However, in this latter case, the potential in which the electrolytes evolve is not homogeneous, which is less amenable to a mean-field description. In this report, we show that at polarised soft interfaces the potential difference takes place between two closely interacting ionic monolayers. In this configuration, ions of opposite charges directly neutralise each other leading to an absence of diffuse layers and charge screening by surrounding ions. Thus, independently of the electrolyte concentrations, the surface charge density is a linear function of the potential difference, which results in a constant capacitance.

17.
Chem Commun (Camb) ; 55(97): 14633-14636, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31746844

RESUMO

Sodium chromium hexacyanoferrate (NaCrHCF) is obtained here using a facile co-precipitation method at room temperature. The powder was investigated in terms of potential use as a cathode material for aqueous sodium-ion batteries under neutral conditions. The highest achieved discharge capacity of NaCrHCF was around ∼64 mA h g-1 at C/3 current rate.

18.
Chem Sci ; 10(32): 7633-7640, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31588315

RESUMO

Diffusion controlled chemical reactions are usually observed in three dimensional media. In contrast, planar bimolecular reactions taking place between reagents adsorbed at a soft interface are two-dimensional and therefore cannot be studied within the same formalism. Indeed, soft interfaces allow the adsorbed species to freely diffuse in a liquid-like manner. Here, we present the first experimental observation of a diffusion-controlled reaction in an environment that is planar at the ångström scale. By means of time-resolved surface second harmonic generation, an inherently surface sensitive technique, we observed that the kinetics of the diffusion of the reagents in the plane decreases as the surface concentration of adsorbed species increases. This is of course not the case for bulk reactions where the rates always increase with the reactant concentration. Such changes in the kinetics regime were rationalised as the evolution from a regular 2D free diffusion regime to a geometry-controlled scheme.

19.
Anal Chem ; 91(20): 12900-12908, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31529964

RESUMO

A noninvasive electrochemical melanoma detection approach based on using adhesive tapes for collecting and fixing cells from a suspicious skin area and transferring the cells into a scanning electrochemical microscope (SECM) is presented. The adhesive layer collects the cells reproducibly and keeps them well adhered on the tape during experiments in an electrolyte solution. A melanoma biomarker, here the intracellular enzyme tyrosinase (TYR), was imaged on the tape-collected cells without further cell lysing using antibodies that were labeled with horseradish peroxidase (HRP). The HRP labels catalyzed the oxidation of a dissolved redox-active species, which was detected at a soft microelectrode, gently brushed in contact mode over the tape. The melanoma biomarker was first detected on tape-stripped samples with murine melanoma cells of different concentrations. Thereafter, increasing levels of TYR were recorded in cells that were collected from the skin of melanoma mouse models representing three different stages of tumor growth. Additionally, SECM results of tape-stripped different human melanoma cell lines were confirmed by previous studies based on traditionally fixed and permeabilized cells.


Assuntos
Adesivos/química , Biomarcadores Tumorais/metabolismo , Melanoma Experimental/diagnóstico , Microscopia Eletroquímica de Varredura/métodos , Neoplasias Cutâneas/diagnóstico , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Catálise , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Oxirredução , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Células Tumorais Cultivadas
20.
Mikrochim Acta ; 186(8): 532, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31309336

RESUMO

An electrochemical sensor is described for the determination of L-dopa (levodopa; 3,4-dihydroxyphenylalanine). An inkjet-printed carbon nanotube (IJPCNT) electrode was modified with manganese dioxide microspheres by drop-casting. They coating was characterized by field emission scanning electron microscopy, Fourier-transform infrared spectroscopy and X-ray powder diffraction. The sensor, best operated at a working voltage of 0.3 V, has a linear response in the 0.1 to 10 µM L-dopa concentration range, a 54 nM detection limit, excellent reproducibility, repeatability and selectivity. The amperometric approach was applied to the determination of L-dopa in spiked biological fluids and displayed satisfactory accuracy and precision. Graphical abstract Schematic representation of an amperometric method for determination L-dopa. It is based on the use of inkjet-printed carbon nanotube electrode (IJPCNT) modified with manganese dioxide (MnO2).


Assuntos
Técnicas Eletroquímicas/métodos , Levodopa/análise , Microesferas , Nanotubos de Carbono/química , Eletrodos , Humanos , Tinta , Levodopa/sangue , Levodopa/urina , Limite de Detecção , Compostos de Manganês/química , Óxidos/química , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA