Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 19(4): e1010360, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37104250

RESUMO

There are longstanding questions about the origins and ancestry of the Picts of early medieval Scotland (ca. 300-900 CE), prompted in part by exotic medieval origin myths, their enigmatic symbols and inscriptions, and the meagre textual evidence. The Picts, first mentioned in the late 3rd century CE resisted the Romans and went on to form a powerful kingdom that ruled over a large territory in northern Britain. In the 9th and 10th centuries Gaelic language, culture and identity became dominant, transforming the Pictish realm into Alba, the precursor to the medieval kingdom of Scotland. To date, no comprehensive analysis of Pictish genomes has been published, and questions about their biological relationships to other cultural groups living in Britain remain unanswered. Here we present two high-quality Pictish genomes (2.4 and 16.5X coverage) from central and northern Scotland dated from the 5th-7th century which we impute and co-analyse with >8,300 previously published ancient and modern genomes. Using allele frequency and haplotype-based approaches, we can firmly place the genomes within the Iron Age gene pool in Britain and demonstrate regional biological affinity. We also demonstrate the presence of population structure within Pictish groups, with Orcadian Picts being genetically distinct from their mainland contemporaries. When investigating Identity-By-Descent (IBD) with present-day genomes, we observe broad affinities between the mainland Pictish genomes and the present-day people living in western Scotland, Wales, Northern Ireland and Northumbria, but less with the rest of England, the Orkney islands and eastern Scotland-where the political centres of Pictland were located. The pre-Viking Age Orcadian Picts evidence a high degree of IBD sharing across modern Scotland, Wales, Northern Ireland, and the Orkney islands, demonstrating substantial genetic continuity in Orkney for the last ~2,000 years. Analysis of mitochondrial DNA diversity at the Pictish cemetery of Lundin Links (n = 7) reveals absence of direct common female ancestors, with implications for broader social organisation. Overall, our study provides novel insights into the genetic affinities and population structure of the Picts and direct relationships between ancient and present-day groups of the UK.


Assuntos
DNA Mitocondrial , Humanos , Feminino , Haplótipos/genética , Escócia , DNA Mitocondrial/genética , Frequência do Gene
2.
Cell ; 186(1): 32-46.e19, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608656

RESUMO

We investigate a 2,000-year genetic transect through Scandinavia spanning the Iron Age to the present, based on 48 new and 249 published ancient genomes and genotypes from 16,638 modern individuals. We find regional variation in the timing and magnitude of gene flow from three sources: the eastern Baltic, the British-Irish Isles, and southern Europe. British-Irish ancestry was widespread in Scandinavia from the Viking period, whereas eastern Baltic ancestry is more localized to Gotland and central Sweden. In some regions, a drop in current levels of external ancestry suggests that ancient immigrants contributed proportionately less to the modern Scandinavian gene pool than indicated by the ancestry of genomes from the Viking and Medieval periods. Finally, we show that a north-south genetic cline that characterizes modern Scandinavians is mainly due to the differential levels of Uralic ancestry and that this cline existed in the Viking Age and possibly earlier.


Assuntos
Genoma Humano , Humanos , Europa (Continente) , Variação Genética , Países Escandinavos e Nórdicos , Reino Unido , População Branca/genética , População Branca/história , Migração Humana
3.
Nature ; 607(7918): 313-320, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768506

RESUMO

The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1-8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000-30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.


Assuntos
Cães , Genoma , Genômica , Filogenia , Lobos , África , Animais , DNA Antigo/análise , Cães/genética , Domesticação , Europa (Continente) , Genoma/genética , História Antiga , Oriente Médio , Mutação , América do Norte , Seleção Genética , Sibéria , Proteínas Supressoras de Tumor/genética , Lobos/classificação , Lobos/genética
4.
Science ; 370(6516): 557-564, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33122379

RESUMO

Dogs were the first domestic animal, but little is known about their population history and to what extent it was linked to humans. We sequenced 27 ancient dog genomes and found that all dogs share a common ancestry distinct from present-day wolves, with limited gene flow from wolves since domestication but substantial dog-to-wolf gene flow. By 11,000 years ago, at least five major ancestry lineages had diversified, demonstrating a deep genetic history of dogs during the Paleolithic. Coanalysis with human genomes reveals aspects of dog population history that mirror humans, including Levant-related ancestry in Africa and early agricultural Europe. Other aspects differ, including the impacts of steppe pastoralist expansions in West and East Eurasia and a near-complete turnover of Neolithic European dog ancestry.


Assuntos
Animais Domésticos/genética , Cães/genética , Lobos/genética , África , Animais , Domesticação , Europa (Continente) , Genômica , População
5.
Sci Justice ; 60(4): 388-397, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32650941

RESUMO

The Quantiplex® Pro RGQ kit quantifies DNA in a sample, supports the detection of mixtures and assesses the extent of DNA degradation based on relative ratios of amplified autosomal and male markers. Data show no significant difference in the accuracy and sensitivity of quantification between this and the Promega PowerQuant® System, both detecting the lowest amount of DNA tested, 4 pg. Laboratory controlled mixed male:female DNA samples together with mock sexual assault samples were quantified across a range of mixture ratios. Analysis software detected mixed DNA samples across all ratios for both quantification kits. Subsequent STR analysis using the Investigator® 24Plex QS Kit was able to corroborate mixture detection down to 1:25 male:female DNA ratios, past which point mixtures appeared identical to single-source female samples. Analysis software also detected laboratory degraded DNA samples, with data showing a positive trend between the Degradation Index (DI) and length of time of sonication. When used on ancient remains the assay was able to triage samples for further analysis, and STR profiles were concordant with DNA quantification results in all instances. STR analyses of laboratory-controlled sensitivity, mixture, and degradation studies supports the quality metric obtained from quantification. These data support the use of the Quantiplex® Pro RGQ kit for sample screening and quantification in forensic casework and ancient DNA studies.


Assuntos
Benchmarking , Impressões Digitais de DNA , DNA/análise , Impressões Digitais de DNA/métodos , Feminino , Humanos , Masculino , Repetições de Microssatélites
6.
PeerJ ; 8: e9001, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32337106

RESUMO

Shotgun metagenomics applied to archaeological feces (paleofeces) can bring new insights into the composition and functions of human and animal gut microbiota from the past. However, paleofeces often undergo physical distortions in archaeological sediments, making their source species difficult to identify on the basis of fecal morphology or microscopic features alone. Here we present a reproducible and scalable pipeline using both host and microbial DNA to infer the host source of fecal material. We apply this pipeline to newly sequenced archaeological specimens and show that we are able to distinguish morphologically similar human and canine paleofeces, as well as non-fecal sediments, from a range of archaeological contexts.

7.
Am J Phys Anthropol ; 172(3): 347-375, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32237144

RESUMO

OBJECTIVES: Crown and root traits, like those in the Arizona State University Dental Anthropology System (ASUDAS), are seemingly useful as genetic proxies. However, recent studies report mixed results concerning their heritability, and ability to assess variation to the level of genomic data. The aim is to test further if such traits can approximate genetic relatedness, among continental and global samples. MATERIALS AND METHODS: First, for 12 African populations, Mantel correlations were calculated between mean measure of divergence (MMD) distances from up to 36 ASUDAS traits, and FST distances from >350,000 single nucleotide polymorphisms (SNPs) among matched dental and genetic samples. Second, among 32 global samples, MMD and FST distances were again compared. Correlations were also calculated between them and inter-sample geographic distances to further evaluate correspondence. RESULTS: A close ASUDAS/SNP association, based on MMD and F ST correlations, is evident, with r m -values between .72 globally and .84 in Africa. The same is true concerning their association with geographic distances, from .68 for a 36-trait African MMD to .77 for F ST globally; one exception is F ST and African geographic distances, r m = 0.49. Partial MMD/F ST correlations controlling for geographic distances are strong for Africa (.78) and moderate globally (.4). DISCUSSION: Relative to prior studies, MMD/F ST correlations imply greater dental and genetic correspondence; for studies allowing direct comparison, the present correlations are markedly stronger. The implication is that ASUDAS traits are reliable proxies for genetic data-a positive conclusion, meaning they can be used with or instead of genomic markers when the latter are unavailable.


Assuntos
Genoma/genética , Polimorfismo de Nucleotídeo Único/genética , Coroa do Dente/anatomia & histologia , Raiz Dentária/anatomia & histologia , Antropologia Física , Genética Populacional , Genômica , Humanos , Grupos Raciais/estatística & dados numéricos
9.
Proc Natl Acad Sci U S A ; 116(31): 15341-15343, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31308231

RESUMO

The UNESCO World Heritage site of L'Anse aux Meadows (LAM) in northern Newfoundland is the only undisputed site of pre-1492 presence of Europeans in the Americas. In August 2018, we undertook fieldwork at LAM to sample the peat bog 30 m east of the Norse ruins for a multiproxy paleoenvironmental assessment of Norse settlement. Instead, we encountered a new cultural horizon. Here we report our fieldwork at this iconic site and a Bayesian analysis of legacy radiocarbon data, which nuance previous conclusions and suggest Norse activity at LAM may have endured for a century. In light of these findings, we reflect on how the cultural horizon, containing nonnative ecofacts, may relate to indigenous or Norse activities.


Assuntos
Pradaria , Arqueologia , Oceano Atlântico , Teorema de Bayes , Meio Ambiente , Modelos Teóricos , Terra Nova e Labrador , Datação Radiométrica
10.
Proc Natl Acad Sci U S A ; 116(19): 9469-9474, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30988179

RESUMO

Paleogenomic and archaeological studies show that Neolithic lifeways spread from the Fertile Crescent into Europe around 9000 BCE, reaching northwestern Europe by 4000 BCE. Starting around 4500 BCE, a new phenomenon of constructing megalithic monuments, particularly for funerary practices, emerged along the Atlantic façade. While it has been suggested that the emergence of megaliths was associated with the territories of farming communities, the origin and social structure of the groups that erected them has remained largely unknown. We generated genome sequence data from human remains, corresponding to 24 individuals from five megalithic burial sites, encompassing the widespread tradition of megalithic construction in northern and western Europe, and analyzed our results in relation to the existing European paleogenomic data. The various individuals buried in megaliths show genetic affinities with local farming groups within their different chronological contexts. Individuals buried in megaliths display (past) admixture with local hunter-gatherers, similar to that seen in other Neolithic individuals in Europe. In relation to the tomb populations, we find significantly more males than females buried in the megaliths of the British Isles. The genetic data show close kin relationships among the individuals buried within the megaliths, and for the Irish megaliths, we found a kin relation between individuals buried in different megaliths. We also see paternal continuity through time, including the same Y-chromosome haplotypes reoccurring. These observations suggest that the investigated funerary monuments were associated with patrilineal kindred groups. Our genomic investigation provides insight into the people associated with this long-standing megalith funerary tradition, including their social dynamics.


Assuntos
Arqueologia , Cromossomos Humanos Y/genética , Genoma Humano , Haplótipos , Agricultura/história , Sepultamento , Feminino , História Antiga , Humanos , Masculino , Reino Unido
12.
Curr Biol ; 27(21): 3396-3402.e5, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29107554

RESUMO

The origins and genetic affinity of the aboriginal inhabitants of the Canary Islands, commonly known as Guanches, are poorly understood. Though radiocarbon dates on archaeological remains such as charcoal, seeds, and domestic animal bones suggest that people have inhabited the islands since the 5th century BCE [1-3], it remains unclear how many times, and by whom, the islands were first settled [4, 5]. Previously published ancient DNA analyses of uniparental genetic markers have shown that the Guanches carried common North African Y chromosome markers (E-M81, E-M78, and J-M267) and mitochondrial lineages such as U6b, in addition to common Eurasian haplogroups [6-8]. These results are in agreement with some linguistic, archaeological, and anthropological data indicating an origin from a North African Berber-like population [1, 4, 9]. However, to date there are no published Guanche autosomal genomes to help elucidate and directly test this hypothesis. To resolve this, we generated the first genome-wide sequence data and mitochondrial genomes from eleven archaeological Guanche individuals originating from Gran Canaria and Tenerife. Five of the individuals (directly radiocarbon dated to a time transect spanning the 7th-11th centuries CE) yielded sufficient autosomal genome coverage (0.21× to 3.93×) for population genomic analysis. Our results show that the Guanches were genetically similar over time and that they display the greatest genetic affinity to extant Northwest Africans, strongly supporting the hypothesis of a Berber-like origin. We also estimate that the Guanches have contributed 16%-31% autosomal ancestry to modern Canary Islanders, here represented by two individuals from Gran Canaria.


Assuntos
DNA Antigo/análise , DNA Mitocondrial/genética , Emigração e Imigração/estatística & dados numéricos , Genoma Humano/genética , Genoma Mitocondrial/genética , Grupos Raciais/genética , África do Norte , Arqueologia/métodos , Restos Mortais , Marcadores Genéticos , Genética Populacional , Humanos , Polimorfismo de Nucleotídeo Único/genética , Espanha , Dente/anatomia & histologia
14.
Proc Natl Acad Sci U S A ; 111(17): 6184-9, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24753608

RESUMO

Modern domestic plants and animals are subject to human-driven selection for desired phenotypic traits and behavior. Large-scale genetic studies of modern domestic populations and their wild relatives have revealed not only the genetic mechanisms underlying specific phenotypic traits, but also allowed for the identification of candidate domestication genes. Our understanding of the importance of these genes during the initial stages of the domestication process traditionally rests on the assumption that robust inferences about the past can be made on the basis of modern genetic datasets. A growing body of evidence from ancient DNA studies, however, has revealed that ancient and even historic populations often bear little resemblance to their modern counterparts. Here, we test the temporal context of selection on specific genetic loci known to differentiate modern domestic chickens from their extant wild ancestors. We extracted DNA from 80 ancient chickens excavated from 12 European archaeological sites, dated from ∼ 280 B.C. to the 18th century A.D. We targeted three unlinked genetic loci: the mitochondrial control region, a gene associated with yellow skin color (ß-carotene dioxygenase 2), and a putative domestication gene thought to be linked to photoperiod and reproduction (thyroid-stimulating hormone receptor, TSHR). Our results reveal significant variability in both nuclear genes, suggesting that the commonality of yellow skin in Western breeds and the near fixation of TSHR in all modern chickens took place only in the past 500 y. In addition, mitochondrial variation has increased as a result of recent admixture with exotic breeds. We conclude by emphasizing the perils of inferring the past from modern genetic data alone.


Assuntos
Animais Domésticos/genética , Galinhas/genética , DNA/genética , DNA/história , Animais , DNA Mitocondrial/genética , Europa (Continente) , Geografia , Haplótipos/genética , História Antiga , Humanos , Dados de Sequência Molecular , Reprodutibilidade dos Testes
15.
Proc Natl Acad Sci U S A ; 111(13): 4826-31, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639505

RESUMO

The human colonization of Remote Oceania remains one of the great feats of exploration in history, proceeding east from Asia across the vast expanse of the Pacific Ocean. Human commensal and domesticated species were widely transported as part of this diaspora, possibly as far as South America. We sequenced mitochondrial control region DNA from 122 modern and 22 ancient chicken specimens from Polynesia and Island Southeast Asia and used these together with Bayesian modeling methods to examine the human dispersal of chickens across this area. We show that specific techniques are essential to remove contaminating modern DNA from experiments, which appear to have impacted previous studies of Pacific chickens. In contrast to previous reports, we find that all ancient specimens and a high proportion of the modern chickens possess a group of unique, closely related haplotypes found only in the Pacific. This group of haplotypes appears to represent the authentic founding mitochondrial DNA chicken lineages transported across the Pacific, and allows the early dispersal of chickens across Micronesia and Polynesia to be modeled. Importantly, chickens carrying this genetic signature persist on several Pacific islands at high frequencies, suggesting that the original Polynesian chicken lineages may still survive. No early South American chicken samples have been detected with the diagnostic Polynesian mtDNA haplotypes, arguing against reports that chickens provide evidence of Polynesian contact with pre-European South America. Two modern specimens from the Philippines carry haplotypes similar to the ancient Pacific samples, providing clues about a potential homeland for the Polynesian chicken.


Assuntos
Migração Animal , Galinhas/genética , DNA/genética , Animais , Pareamento de Bases/genética , Teorema de Bayes , Genoma Mitocondrial/genética , Geografia , Haplótipos/genética , Humanos , Região de Controle de Locus Gênico/genética , Dados de Sequência Molecular , Oceano Pacífico , Filogenia , Polinésia , Fatores de Tempo
16.
Proc Math Phys Eng Sci ; 469(2159): 20130395, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24204188

RESUMO

The Egyptian state was formed prior to the existence of verifiable historical records. Conventional dates for its formation are based on the relative ordering of artefacts. This approach is no longer considered sufficient for cogent historical analysis. Here, we produce an absolute chronology for Early Egypt by combining radiocarbon and archaeological evidence within a Bayesian paradigm. Our data cover the full trajectory of Egyptian state formation and indicate that the process occurred more rapidly than previously thought. We provide a timeline for the First Dynasty of Egypt of generational-scale resolution that concurs with prevailing archaeological analysis and produce a chronometric date for the foundation of Egypt that distinguishes between historical estimates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA