Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36946464

RESUMO

Female cancer survivors are significantly more likely to experience infertility than the general population. It is well established that chemotherapy and radiotherapy can damage the ovary and compromise fertility, yet the ability of cancer treatments to induce uterine damage, and the underlying mechanisms, have been understudied. Here, we show that in mice total-body γ-irradiation (TBI) induced extensive DNA damage and apoptosis in uterine cells. We then transferred healthy donor embryos into ovariectomized adolescent female mice that were previously exposed to TBI to study the impacts of radiotherapy on the uterus independent from effects to ovarian endocrine function. Following TBI, embryo attachment and implantation were unaffected, but fetal resorption was evident at midgestation in 100% of dams, suggesting failed placental development. Consistent with this hypothesis, TBI impaired the decidual response in mice and primary human endometrial stromal cells. TBI also caused uterine artery endothelial dysfunction, likely preventing adequate blood vessel remodeling in early pregnancy. Notably, when pro-apoptotic protein Puma-deficient (Puma-/-) mice were exposed to TBI, apoptosis within the uterus was prevented, and decidualization, vascular function, and pregnancy were restored, identifying PUMA-mediated apoptosis as a key mechanism. Collectively, these data show that TBI damages the uterus and compromises pregnancy success, suggesting that optimal fertility preservation during radiotherapy may require protection of both the ovaries and uterus. In this regard, inhibition of PUMA may represent a potential fertility preservation strategy.


Assuntos
Proteínas Reguladoras de Apoptose , Placenta , Gravidez , Feminino , Humanos , Camundongos , Animais , Adolescente , Proteínas Reguladoras de Apoptose/metabolismo , Útero/metabolismo , Implantação do Embrião/fisiologia , Placentação
2.
Reproduction ; 164(6): V15-V18, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36215096

RESUMO

Human genome-wide association studies and evidence from animal models link ovarian ageing to double-strand (ds)DNA break repair capacity. Is there a connection between single-strand (ss)DNA repair mechanisms and ovarian function? We hypothesize that endogenous cellular processes subject oocytes to ssDNA lesions, and thus, ssDNA repair capacity is fundamental to their survival and maintenance.


Assuntos
Quebras de DNA de Cadeia Simples , Estudo de Associação Genômica Ampla , Humanos , Animais , Reparo do DNA , Quebras de DNA de Cadeia Dupla , Oócitos , DNA/genética , DNA de Cadeia Simples
3.
ACS Omega ; 7(28): 24344-24352, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35874228

RESUMO

The transcriptional activity of Forkhead Box O3 (FOXO3a) is inactivated by AKT-mediated phosphorylation on Serine 253 (S253), which enables FOXO3a binding to 14-3-3. Phosphorylated FOXO3a binding to 14-3-3 facilitates the nuclear exclusion of FOXO3a, causing cancer cell proliferation. The FOXO3a/14-3-3 interaction has, therefore, emerged as an important therapeutic target. Here, we report a comprehensive analysis using fluorescence polarization, isothermal titration calorimetry, small-angle X-ray scattering, X-ray crystallography, and molecular dynamics simulations to gain molecular-level insights into the interaction of FOXO3apS253 phosphopeptide with 14-3-3ε. A high-resolution structure of the fluorophore-labeled FOXO3apS253:14-3-3ε complex revealed a distinct mode of interaction compared to other 14-3-3 phosphopeptide complexes. FOXO3apS253 phosphopeptide showed significant structural difference in the positions of the -3 and -4 Arg residues relative to pSer, compared to that of a similar phosphopeptide, FOXO1pS256 bound to 14-3-3σ. Moreover, molecular dynamics studies show that the significant structural changes and molecular interactions noticed in the crystal structure of FOXO3apS253:14-3-3ε are preserved over the course of the simulation. Thus, this study reveals structural differences between the binding to 14-3-3 isoforms of FOXO1pS256 versus FOXO3apS253, providing a framework for the rational design of isoform-specific FOXO/14-3-3 protein-protein interaction inhibitors for therapy.

4.
Cell Chem Biol ; 28(11): 1602-1615.e9, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34111400

RESUMO

Genetic screening technologies to identify and validate macromolecular interactions (MMIs) essential for complex pathways remain an important unmet need for systems biology and therapeutics development. Here, we use a library of peptides from diverse prokaryal genomes to screen MMIs promoting the nuclear relocalization of Forkhead Box O3 (FOXO3a), a tumor suppressor more frequently inactivated by post-translational modification than mutation. A hit peptide engages the 14-3-3 family of signal regulators through a phosphorylation-dependent interaction, modulates FOXO3a-mediated transcription, and suppresses cancer cell growth. In a crystal structure, the hit peptide occupies the phosphopeptide-binding groove of 14-3-3ε in a conformation distinct from its natural peptide substrates. A biophysical screen identifies drug-like small molecules that displace the hit peptide from 14-3-3ε, providing starting points for structure-guided development. Our findings exemplify "protein interference," an approach using evolutionarily diverse, natural peptides to rapidly identify, validate, and develop chemical probes against MMIs essential for complex cellular phenotypes.


Assuntos
Descoberta de Drogas , Proteína Forkhead Box O3/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Células Cultivadas , Feminino , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Genes Supressores de Tumor/efeitos dos fármacos , Humanos , Biblioteca de Peptídeos , Fosforilação , Bibliotecas de Moléculas Pequenas/química
5.
ChemMedChem ; 14(18): 1620-1632, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31334915

RESUMO

The tandem BRCT domains (tBRCT) of BRCA1 engage phosphoserine-containing motifs in target proteins to propagate intracellular signals initiated by DNA damage, thereby controlling cell cycle arrest and DNA repair. Recently, we identified Bractoppin, the first small-molecule inhibitor of the BRCA1 tBRCT domain, which selectively interrupts BRCA1-mediated cellular responses evoked by DNA damage. Here, we combine structure-guided chemical elaboration, protein mutagenesis and cellular assays to define the structural features responsible for Bractoppin's activity. Bractoppin fails to bind mutant forms of BRCA1 tBRCT bearing K1702A, a key residue mediating phosphopeptide recognition, or F1662R or L1701K that adjoin the pSer-recognition site. However, the M1775R mutation, which engages the Phe residue in the consensus phosphopeptide motif pSer-X-X-Phe, does not affect Bractoppin binding, confirming a binding mode distinct from the substrate phosphopeptide binding. We explored these structural features through structure-guided chemical elaboration and characterized structure-activity relationships (SARs) in biochemical assays. Two analogues, CCBT2088 and CCBT2103 were effective in abrogating BRCA1 foci formation and inhibiting G2 arrest induced by irradiation of cells. Collectively, our findings reveal structural features underlying the activity of a novel inhibitor of phosphopeptide recognition by the BRCA1 tBRCT domain, providing fresh insights to guide the development of inhibitors that target protein-protein interactions.


Assuntos
Proteína BRCA1/antagonistas & inibidores , Imidazóis/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína BRCA1/isolamento & purificação , Proteína BRCA1/metabolismo , Relação Dose-Resposta a Droga , Imidazóis/síntese química , Imidazóis/química , Modelos Moleculares , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA