Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Insects ; 15(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38535391

RESUMO

In managed boreal forests, both plantations and natural regeneration are used to re-establish a cohort of conifer trees following harvest or disturbance. Young trees in open plantations generally grow more rapidly than under forest canopies, but more rapid growth could be compromised by greater insect damage. We compared insect damage on white spruce (Picea glauca (Moench) Voss, Pinaceae) growing in plantations with naturally regenerated trees under mature forest canopies in boreal forests (Québec, Canada). We selected ten sites in the naturally regenerated forest and in small, multispecies plantations and sampled ten young trees of 2.5-3 m (per site) in late summer 2020 and again in early and late summer 2021. We compared overall rates of herbivory, galls (adelgids), damage by the spruce budworm (Choristoneura fumiferana, Clemens), and defoliation from sawflies. Overall, insect herbivory damage remained at similarly low levels in both habitats; an average of 9.3% of expanding shoots were damaged on forest trees and 7.7% in plantation trees. Spruce budworm damage increased from 2020 to 2021 and remained higher in under-canopy trees, but damage rates were negligible at this early stage of the outbreak (1.5% in forest vs. 0.78% of buds damaged on plantation trees). While damage due to galls was higher in plantations, the overall low level of damage likely does not pose a significant impact on the growth or mortality of young trees.

2.
Front Cardiovasc Med ; 9: 814057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557538

RESUMO

Venous thromboembolism is a major concern during pregnancy as well as in the postpartum period. In acute proximal deep venous thrombosis, endovascular recanalization with locally administered thrombolytic agents has evolved as therapeutic alternative to anticoagulation alone. However, data on the bleeding risk of thrombolysis in the postpartum period is limited. We addressed the key clinical question of safety outcomes of catheter-directed thrombolysis (CDT) in the peri- and postpartum period. Therefore, we performed a non-exhaustive literature review and illustrated the delicate management of a patient with postpartum acute iliofemoral thrombosis treated with CDT and endovascular revascularization with thrombectomy, balloon angioplasty and stenting.

3.
PLoS One ; 15(7): e0230221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32726307

RESUMO

Old-growth forests play a major role in conserving biodiversity, protecting water resources, and sequestrating carbon, as well as serving as indispensable resources for indigenous societies. Novel silvicultural practices must be developed to emulate the natural dynamics and structural attributes of old-growth forests and preserve the ecosystem services provided by these boreal ecosystems. The success of these forest management strategies depends on developing an accurate understanding of natural regeneration dynamics. Our goal was therefore to identify the main patterns and drivers involved in the regeneration dynamics of old-growth forests with a focus on boreal stands dominated by black spruce (Picea mariana (L.) Mill.) and balsam fir (Abies balsamea (L.) Mill.) in eastern Canada. We sampled 71 stands in a 2 200 km2 study area located within Quebec's boreal region. For each stand, we noted tree regeneration (seedlings and saplings), structural attributes (diameter distribution, deadwood volume, etc.), and abiotic (slope and soil) factors. The presence of seed-trees located nearby and slopes having moderate to high angles most influenced balsam fir regeneration. In contrast, the indirect indices of recent secondary disturbances (e.g., insect outbreaks or windthrows) and topographic constraints (slope and drainage) most influenced black spruce regeneration. We propose that black spruce regeneration dynamics can be separated into distinct phases: (i) layering within the understory, (ii) seedling growth when gaps open in the canopy, (iii) gradual canopy closure, and (iv) production of new layers once the canopy is closed. These dynamics are not observed in paludified stands or stands where balsam fir is more competitive than black spruce. Overall, this research helps explain the complexity of old-growth forest dynamics, where many ecological factors interact at multiple temporal and spatial scales. This study also improves our understanding of ecological processes within primary old-growth forests and identifies the key factors to consider when ensuring the sustainable management of old-growth boreal stands.


Assuntos
Taiga , Traqueófitas/fisiologia , Abies/crescimento & desenvolvimento , Abies/fisiologia , Canadá , Análise por Conglomerados , Picea/crescimento & desenvolvimento , Picea/fisiologia , Plântula , Solo/química , Traqueófitas/crescimento & desenvolvimento
4.
Front Plant Sci ; 9: 1145, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174675

RESUMO

Forest regeneration is a key element in achieving sustainable forest management. Partial harvest methods have been used extensively in temperate broadleaf and mixedwood ecosystems to promote regeneration on poorly stocked sites and to maintain forest composition and productivity. However, their effectiveness in promoting conifer establishment has yet to be demonstrated in unmanaged boreal forests, especially those dominated by black spruce (Picea mariana (Mill.) BSP) where constraints for regeneration differ from those found in more meridional regions. We aimed to evaluate conifer seedling density and dimensions, 10 years after the onset of a gradient of silvicultural treatments varying in harvesting intensities, and to identify the critical factors driving the regeneration process. Study blocks of even-aged black spruce stands in the eastern Canadian boreal forest were submitted to three variants of shelterwood harvesting: a seed-tree harvest, a clear-cut and an untreated control. Shelterwood and seed-tree harvesting were combined with spot scarification to promote regeneration. Shelterwood and seed-tree harvesting produced a density of conifer regeneration sufficient to maintain forest productivity, but they did not promote seedling growth. Black spruce was the predominant species in terms of regeneration density, with proportions 3-5× higher than that for balsam fir (Abies balsamea (L.) Mill.). Ten years after treatment, seed-origin black spruce seedlings were abundant in skidding trails, while layers dominated the residual strips. Balsam fir density was not influenced by treatment nor by tree position relative to skidding trails. Balsam fir and black spruce had different responses to treatment in terms of height and diameter, the former exhibiting a better growth performance and larger diameter in the residual strips. Spot scarification created micro-sites that had a significant impact on the regeneration process. Overall, our results support that shelterwood and seed-tree harvesting combined with scarification enable adequate regeneration in black spruce stands, confirming these treatments as viable silvicultural alternatives to clear-cutting when required by sustainable forest management objectives.

5.
Front Plant Sci ; 9: 1905, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622551

RESUMO

In scenarios of future climate change, there is a projectedincrease in the occurrence and severity of natural disturbances inboreal forests. Spruce budworm (Choristoneura fumiferana)(SBW) is the main defoliator of conifer trees in the North American boreal forests affecting large areas and causing marked losses of timber supplies. However, the impact and the spatiotemporal patterns of SBW dynamics at the landscape scale over the last century remain poorly known. This is particularly true for northern regions dominated by spruce species. The main goal of this study is to reconstruct SBW outbreaks during the 20th century at the landscape scale and to evaluate changes in the associated spatiotemporal patterns in terms of distribution area, frequency, and severity. We rely on a dendroecological approach from sites within the eastern Canadian boreal forest and draw from a large dataset of almost 4,000 trees across a study area of nearly 800,000 km2. Interpolation and analyses of hotspots determined reductions in tree growth related to insect outbreak periods and identified the spatiotemporal patterns of SBW activity over the last century. The use of an Ordinary Least Squares model including regional temperature and precipitation anomalies allows us to assess the impact of climate variables on growth reductions and to compensate for the lack of non-host trees in northern regions. We identified three insect outbreaks having different spatiotemporal patterns, duration, and severity. The first (1905-1930) affected up to 40% of the studied trees, initially synchronizing from local infestations and then migrating to northern stands. The second outbreak (1935-1965) was the longest and the least severe with only up to 30% of trees affected by SBW activity. The third event (1968-1988) was the shortest, yet it was also the most severe and extensive, affecting nearly up to 50% of trees and 70% of the study area. This most recent event was identified for the first time at the limit of the commercial forest illustrating a northward shift of the SBW distribution area during the 20th century. Overall, this research confirms that insect outbreaks are a complex and dynamic ecological phenomena, which makes the understanding of natural disturbance cycles at multiple scales a major priority especially in the context of future regional climate change.

6.
PLoS One ; 12(2): e0172653, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28222200

RESUMO

Forest ecosystem management heads towards the use of partial cuttings. However, the wide variation in growth response of residual trees remains unexplained, preventing a suitable prediction of forest productivity. The aim of the study was to assess individual growth and identify the driving factors involved in the responses of residual trees. Six study blocks in even-aged black spruce [Picea mariana (Mill.) B.S.P.] stands of the eastern Canadian boreal forest were submitted to experimental shelterwood and seed-tree treatments. Individual-tree models were applied to 1039 trees to analyze their patterns of radial growth during the 10 years after partial cutting by using the nonlinear Schnute function on tree-ring series. The trees exhibited different growth patterns. A sigmoid growth was detected in 32% of trees, mainly in control plots of older stands. Forty-seven percent of trees located in the interior of residual strips showed an S-shape, which was influenced by stand mortality, harvested intensity and dominant height. Individuals showing an exponential pattern produced the greatest radial growth after cutting and were edge trees of younger stands with higher dominant height. A steady growth decline was observed in 4% of trees, represented by the individuals suppressed and insensitive to the treatment. The analyses demonstrated that individual nonlinear models are able to assess the variability in growth within the stand and the factors involved in the occurrence of the different growth patterns, thus improving understanding of the tree responses to partial cutting. This new approach can sustain forest management strategies by defining the best conditions to optimize the growth yield of residual trees.


Assuntos
Agricultura Florestal/métodos , Picea/crescimento & desenvolvimento , Clima , Florestas , Modelos Biológicos , Dinâmica não Linear , Quebeque , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA