Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Am J Physiol Renal Physiol ; 299(3): F479-86, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20591940

RESUMO

Identification of renal cell progenitors and recognition of the events contributing to cell regeneration following ischemia-reperfusion injury (IRI) are a major challenge. In a mouse model of unilateral renal IRI, we demonstrated that the first cells to proliferate within injured kidneys were urothelial cells expressing the progenitor cell marker cytokeratin 14. A systematic cutting of the injured kidney revealed that these urothelial cells were located in the deep cortex at the corticomedullary junction in the vicinity of lobar vessels. Contrary to multilayered bladder urothelium, these intrarenal urothelial cells located in the upper part of the medulla constitute a monolayered barrier and express among uroplakins only uroplakin III. However, like bladder progenitors, intrarenal urothelial cells proliferated through a FGF receptor-2 (FGFR2)-mediated process. They strongly expressed FGFR2 and proliferated in vivo after recombinant FGF7 administration to control mice. In addition, IRI led to FGFR phosphorylation together with the selective upregulation of FGF7 and FGF2. Conversely, by day 2 following IRI, renal urothelial cell proliferation was significantly inhibited by FGFR2 antisense oligonucleotide administration into an intrarenal urinary space. Of notice, no significant migration of these early dividing urothelial cells was detected in the cortex within 7 days following IRI. Thus our data show that following IRI, proliferation of urothelial cells is mediated by the FGFR2 pathway and precedes tubular cell proliferation, indicating a particular sensitivity of this structure to changes caused by the ischemic process.


Assuntos
Proliferação de Células , Córtex Renal/patologia , Traumatismo por Reperfusão/patologia , Animais , Modelos Animais de Doenças , Feminino , Fator 7 de Crescimento de Fibroblastos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais/fisiologia , Urotélio/patologia
2.
Biofizika ; 49(6): 987-94, 2004.
Artigo em Russo | MEDLINE | ID: mdl-15612537

RESUMO

The main function of the chaperone GroEL is to prevent nonspecific association of nonnative protein chains and provide their correct folding. In the present work, the renaturation kinetics of three globular proteins (human alpha-lactalbumin, bovine carbonic anhydrase, and yeast phosphoglycerate kinase) in the presence of different molar excess of GroEL (up to 10-fold) was studied. It was shown that the formation of the native structure during the refolding of these proteins is retarded with an increase in GroEL molar excess due to the interaction of kinetic protein intermediates with the chaperone. Mg(2+)-ATP and Mg(2+)-ADP weaken this interaction and decrease the retarding effect of GroEL on the protein refolding kinetics. The theoretical modeling of protein folding in the presence of GroEL showed that the experimentally observed linear increase in the protein refolding half-time with increasing molar excess of GroEL must occur only when the protein adopts its native structure outside of GroEL (i.e. in the free state), while the refolding of the protein in the complex with GroEL is inhibited. The dissociation constants of GroEL complexed with the kinetic intermediates of the proteins studied were evaluated, and a simple mechanism of the functioning of GroEL as a molecular chaperone was proposed.


Assuntos
Proteínas de Bactérias/química , Anidrase Carbônica I/química , Proteínas de Choque Térmico/química , Lactalbumina/química , Fosfoglicerato Quinase/química , Dobramento de Proteína , Renaturação Proteica , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Animais , Bovinos , Chaperoninas/química , Escherichia coli/enzimologia , Proteínas de Escherichia coli , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Termodinâmica , Leveduras/enzimologia
3.
J Biol Chem ; 274(30): 20756-8, 1999 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-10409613

RESUMO

Chaperonin GroEL, consisting of two seven-subunit rings stacked back-to-back, is disassembled by interaction of 4, 4'-dithiodipyridine (DTP) with Cys(458) located close to the intersubunit contacts within and between the rings. The thiol group of Cys(458) is inaccessible to the probe being buried into the pocket locked by segment Asn(475)-Asn(487). Flexibility of this segment is proposed to induce the "open" state of the pocket and accommodate the bulky probe inside so that the consequential irreversible shifts in the pocket constituents disassemble GroEL. This scheme is supported by the finding that DTP-induced disassembly of GroEL is facilitated by ATP, which specifically stimulates a local shift of the segment Asn(475)-Asn(487) into solution.


Assuntos
Chaperonina 60/química , Dissulfetos/metabolismo , Conformação Proteica , Piridinas/metabolismo , Chaperonina 60/metabolismo , Cisteína/química , Cisteína/metabolismo , Reagentes de Sulfidrila/metabolismo
4.
Proc Natl Acad Sci U S A ; 95(2): 478-83, 1998 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-9435217

RESUMO

Chaperonin GroEL has been found to interact with isolated cytoplasmic membrane of Escherichia coli. Interaction requires Mg ions, whereas MgATP inhibits, and inhibition is stronger in the presence of co-chaperonin GroES. "Heat-shock" of the membrane at 45 degrees C destroys irreversibly its ability to bind GroEL. The binding of GroEL is characterized by saturation with a maximum of about 100 pmol GroEL bound per mg of total membrane protein, indicating a limited capacity and specificity of the membrane to bind GroEL. According to results of immunoblotting analysis and cleavable photoactivable cross-linking, a membrane target of GroEL is SecA, a protein known as a central component of the translocation machinery. Moreover, in some cases GroEL could modulate a cycle of association of SecA with the membrane by stimulating release of SecA from the membrane. A physiological role of targeting of GroEL in or close to the protein-conducting membrane apparatus is discussed.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Chaperonina 60/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras , Transporte Biológico , Reagentes de Ligações Cruzadas/metabolismo , Canais de Translocação SEC , Proteínas SecA
5.
J Biol Chem ; 271(36): 22256-61, 1996 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-8703042

RESUMO

Using an in vitro membrane-free translation system from Escherichia coli, it is shown that chaperonin GroEL added cotranslationally interacts with newly synthesized lactose permease (LacY), a polytopic membrane protein, thereby preventing aggregation. Subsequently, when the isolated GroEL-LacY complex is incubated with inverted membrane vesicles, the permease is inserted into the membrane in a MgATP-dependent manner. Post-translational membrane insertion is also observed when aggregation of newly synthesized LacY is prevented by addition of the nonionic detergent n-dodecyl-beta,D-maltoside during translation in place of GroEL. No membrane integration occurs with right-side-out vesicles, indicating that LacY interacts specifically only with the cytosolic face of the membrane. Ligand thiodigalactoside protection against alkylation of the Cys-148 residue in the permease shows proper post-translational insertion. Moreover, limited proteolysis of soluble LacY either complexed with GroEL or in detergent indicates that the newly synthesized protein assumes a conformation that is comparable to that of native, membrane-embedded permease prior to insertion into the membrane.


Assuntos
Chaperonina 60/metabolismo , Proteínas de Escherichia coli , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Monossacarídeos , Simportadores , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Cisteína/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Processamento de Proteína Pós-Traducional
6.
FEBS Lett ; 366(1): 17-20, 1995 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-7789507

RESUMO

In the presence of MgATP or MgADP the E. coli chaperonin proteins, GroEL and GroES, form a stable asymmetric complex with a stoichiometry of two GroEL7:one GroES7: seven MgADP. The distribution of the ligands between the two heptameric GroEL rings is crucial to our understanding of the mechanism of chaperonin-assisted folding, being either cis (i.e. [GroEL7.MgADP7.GroES7]-[GroEL7]) or trans (i.e. [GroEL7.MgADP7]-[GroEL7.GroES7]. On the basis of cross-linking experiments with 8-azido-ATP and the heterobifunctional reagent, N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP), it was suggested that GroES and MgADP are bound to the same GroEL ring which resists proteinase K digestion [Nature 366 (1993) 228-233]. However, we find that the SPDP-promoted cross linking of GroES and GroEL occurs in the absence of Mg2+, ADP or ATP, which are required for the formation of the asymmetric complex. Cross-linking is shown to occur only when the SPDP-modified GroES is co-precipitated with GroEL by trichloracetic acid. Furthermore, there are structural grounds for questioning whether SPDP can crosslink, in a physiologically relevant manner, an amino group of GroES with any of the cysteinyl groups of GroEL.


Assuntos
Difosfato de Adenosina/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Sítios de Ligação , Chaperonina 60/química , Reagentes de Ligações Cruzadas , Cisteína/química , Escherichia coli/metabolismo , Ligantes , Substâncias Macromoleculares , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Succinimidas
7.
J Biol Chem ; 269(39): 23869-71, 1994 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-7929031

RESUMO

For its function, the Escherichia coli chaperonin GroEL requires the presence of ATP and co-chaperonin GroES. We have observed that ADP displays a two-step inhibition of GroEL-dependent ATP hydrolysis, wherein one-half of the GroEL ATPase sites is strongly inhibited by ADP while the other half is affected very mildly. It is suggested that interaction with ATP induces structural and functional differences between two initially identical rings in GroEL (inter-ring negative cooperativity) and that the subsequent binding of GroES occurs to the ring that is occupied first by ATP in a positively cooperative manner.


Assuntos
Trifosfato de Adenosina/metabolismo , Chaperonina 60/química , Escherichia coli/metabolismo , Chaperonina 10/química , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Hidrólise , Ligação Proteica
8.
J Biol Chem ; 269(19): 14003-6, 1994 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-7910608

RESUMO

A previous study (Govezensky, D., Greener, T., and Zamir, A. (1991) J. Bacteriol. 20, 6339-6346) indicated that the chaperonin GroEL was required for maximal expression from nif promoters in Klebsiella pneumoniae and nif-transformed Escherichia coli. That this requirement stemmed from the ability of GroEL to properly fold NifA, the nif transcriptional activator, was first supported by co-immunoprecipitation of NifA in K. pneumoniae extracts with anti-GroEL antibodies. In the present in vitro study, NifA, partially purified from E. coli overexpressing the protein, was diluted from a 6 M urea solution into a refolding buffer in the presence or absence of GroEL. Dilution in the absence of GroEL caused the complete precipitation of NifA. When present in the dilution buffer, GroEL bound NifA and maintained it in a soluble state. GroEL was also found to bind NifA newly synthesized in an in vitro translation system. For both NifA preparations, cochaperonin GroES and ATP promoted release of NifA from GroEL. These results provide evidence for the association of NifA with GroEL and for the role of both GroEL and GroES in the solubilization and thereby folding of the nif transcriptional activator.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Chaperonina 60 , Chaperoninas , Escherichia coli/metabolismo , Klebsiella pneumoniae/genética , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Solubilidade , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica
9.
J Mol Biol ; 238(2): 133-8, 1994 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-7908986

RESUMO

A search for co-ordinated amino acid changes in the hsp60 family of chaperonins suggested that cysteine residues at positions 137 and 518 in the Escherichia coli chaperonin GroEL may interact with each other. In order to determine whether this interaction indeed exists we constructed a double-mutant cycle comprising wild-type GroEL, the single mutants Cys137-->Ser and Cys518-->Ser and the corresponding double mutant. The effects of the two mutations on the function of GroEL, in assisting the refolding of a non-folded protein substrate (rhodanese), are shown to be non-additive. It is also shown that ADP by itself specifically destabilizes the Cys518-->Ser mutant GroEL particle with this effect being suppressed in the double mutant. The observed pattern of co-ordinated mutations in the hsp60 family of chaperonins is thus shown to reflect a real interaction, though most likely indirect, between Cys137 and Cys518 in GroEL. Our study demonstrates that patterns of co-ordinated mutations combined with double-mutant cycle analysis can provide structural information on interactions in a protein without an available three-dimensional structure at atomic resolution.


Assuntos
Proteínas de Bactérias/química , Proteínas de Choque Térmico/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Sequência de Bases , Chaperonina 60 , Cisteína , Reativadores Enzimáticos/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Relação Estrutura-Atividade , Tiossulfato Sulfurtransferase/metabolismo
10.
J Biol Chem ; 269(1): 44-6, 1994 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-7903969

RESUMO

The nonhydrolyzable ATP analogue ATP gamma S (adenosine 5'-3-O-(thio)triphosphate) is affinity cross-linked to GroEL by formation of a disulfide bridge in a peroxide-promoted reaction. By replacing with serine each of 3 cysteine residues in GroEL, it is shown that ATP gamma S specifically cross-links to Cys-137. It is thus demonstrated that the ATP bound to GroEL is in direct contact with Cys-137.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Chaperonina 60 , Reagentes de Ligações Cruzadas , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos
11.
J Mol Biol ; 231(1): 58-64, 1993 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-8098773

RESUMO

The mutation Ala2-->Ser in the molecular chaperone GroEL increases positive co-operativity in ATP hydrolysis, as reflected by a change in the Hill coefficient from 2.36(+/- 0.23) for wild-type to 3.19(+/- 0.17) for the mutant. This amino acid replacement destabilizes the oligomeric structure of GroEL. It is shown that adenine nucleotides also have a specific destabilizing effect which is more pronounced in the case of the Ala2-->Ser mutant. Addition of GroES or the non-folded protein ligand rhodanese blocks the destabilizing effect of adenine nucleotides for both wild-type and mutant. The results are interpreted using the Monod-Wyman-Changeux (MWC) model for co-operativity.


Assuntos
Alanina , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mutagênese Sítio-Dirigida , Serina , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Chaperonina 10 , Chaperonina 60 , Cinética , Substâncias Macromoleculares , Modelos Biológicos , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos , Ribonucleotídeos/farmacologia
12.
J Biol Chem ; 268(14): 9957-9, 1993 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-8098040

RESUMO

The Escherichia coli heat-shock protein GroEL is a member of the highly conserved family of tetradecameric chaperonins 60, which assist in the folding and assembly of other proteins. Using site-directed mutagenesis, it is shown that replacement of the absolutely conserved amino acid residue Lys-3 by arginine or isoleucine destabilizes the GroEL particle and that the replacement Lys-3-->Glu completely blocks its formation. The rank order of effects of these mutations on the stability of the GroEL particle correlates with the associated changes in net charge at that position. Our results show that the N terminus of GroEL is a crucial structural element for its assembly.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Escherichia coli/metabolismo , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Lisina , Mutagênese Sítio-Dirigida , Sequência de Aminoácidos , Animais , Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sequência de Bases , Chaperonina 10 , Chaperonina 60 , Cricetinae , Cricetulus , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Proteínas de Choque Térmico/isolamento & purificação , Humanos , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos , Plantas/genética , Mapeamento por Restrição , Homologia de Sequência de Aminoácidos , Ureia
13.
Mol Microbiol ; 7(1): 49-58, 1993 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8094879

RESUMO

The universally distributed heat-shock proteins (HSPs) are divided into classes based on molecular weight and sequence conservation. The members of at least two of these classes, the HSP60s and the HSP70s, have chaperone activity. Most HSP60s and many HSP70s feature a striking motif at or near the carboxyl terminus which consists of a string of repeated glycine and methionine residues. We have altered the groEL gene (encoding the essential Escherichia coli HSP60 chaperonin) so that the protein produced lacks its 16 final (including nine gly, and five met) residues. This truncated product behaves like the intact protein in several in vitro tests, the only discernible difference between the two proteins being in the rate at which ATP is hydrolysed. GroELtr can substitute for GroEL in vivo although cells dependent for survival on the truncated protein survive slightly less well during the stationary phase of growth. Elevated levels of the wild-type protein can suppress a number of temperature-sensitive mutations; the truncated protein lacks this ability.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Proteínas de Choque Térmico/genética , Sequência de Aminoácidos , Sequência de Bases , Chaperonina 60 , Proteínas Fúngicas/genética , Genes Bacterianos , Humanos , Dados de Sequência Molecular , Mutagênese , Fenótipo , Homologia de Sequência de Aminoácidos
14.
J Biol Chem ; 267(36): 25672-5, 1992 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-1361186

RESUMO

To facilitate folding and assembly of different proteins, chaperonin GroEL requires the presence of its helper protein GroES. Using a photochemical cross-linking approach, we show that GroES and newly synthesized pre-beta-lactamase (pre-beta lac) contact with each other only within the ternary complex with GroEL. Possibly owing to this contact GroES is able to directly influence the pre-beta lac/GroEL interaction. Furthermore, the cross-linking of pre-beta lac to GroES suggests that the binding of the protein ligands to GroEL occurs near the GroES binding site, known to be in the central hole space of GroEL.


Assuntos
Proteínas de Bactérias/metabolismo , Precursores Enzimáticos/biossíntese , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , beta-Lactamases/biossíntese , Nucleotídeos de Adenina/metabolismo , Proteínas de Bactérias/isolamento & purificação , Centrifugação com Gradiente de Concentração , Chaperonina 10 , Chaperonina 60 , Reagentes de Ligações Cruzadas , Precursores Enzimáticos/isolamento & purificação , Proteínas de Choque Térmico/isolamento & purificação , Ligação Proteica , Biossíntese de Proteínas , Radioisótopos de Enxofre , Raios Ultravioleta , beta-Lactamases/isolamento & purificação
15.
J Biol Chem ; 267(10): 6796-800, 1992 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-1348056

RESUMO

In the presence of its partner, GroES, the tetradecameric molecular chaperone GroEL binds 14 ATP molecules, half of which are hydrolyzed in a cooperative manner. Moreover GroEL can bind, with a positive cooperativity, more than two molecules of nonfolded protein rhodanese. The role of the cooperative mechanism in the functioning of GroEL is discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Nucleotídeos de Adenina/metabolismo , Trifosfato de Adenosina/metabolismo , Chaperonina 10 , Chaperonina 60 , Hidrólise , Ligantes , Conformação Proteica , Tiossulfato Sulfurtransferase/metabolismo
16.
Nature ; 348(6299): 339-42, 1990 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-1979147

RESUMO

The important Escherichia coli heat-shock protein GroEL of relative molecular mass 57,259 is a typical molecular chaperone. It possesses ATPase activity and interacts in ATP-driven reactions with non-folded proteins to stimulate their correct folding and/or assembly by preventing the formation of improper protein structures or aggregates. As GroEL is isolated and functions as a 20-25S tetradecameric particle (GroELp), the question arises--what is the mechanism of its own assembly? Here we show the (Mg-ATP)-dependent self-stimulation ('self-chaperoning') in vitro of GroELp reassembly from its monomeric state.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Bactérias/isolamento & purificação , Chaperonina 60 , Dicroísmo Circular , Proteínas de Choque Térmico/isolamento & purificação , Cinética , Substâncias Macromoleculares , Peso Molecular , Conformação Proteica , Termodinâmica
17.
Nature ; 336(6196): 254-7, 1988 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-2904124

RESUMO

It has been suggested that newly synthesized proteins are maintained in their unfolded state by cellular ATP-driven factors which may prevent or reverse the formation of misfolded structures or promote the correct assembly of oligomeric proteins or post-translational secretion. Using a photocross-linking approach, we have identified the 20S heat-shock GroEL protein as the major cytosolic component which forms a complex with the unfolded newly synthesized pre-beta-lactamase or chloramphenicol acetyltransferase in Escherichia coli. Dissociation of these complexes is ATP-dependent. The unfolded state of pre-beta-lactamase, maintained by the transient interaction with GroEL, may be essential for the secretion of this protein.


Assuntos
Proteínas de Bactérias/metabolismo , Cloranfenicol O-Acetiltransferase/metabolismo , Precursores Enzimáticos/metabolismo , Proteínas de Choque Térmico/metabolismo , beta-Lactamases/metabolismo , Trifosfato de Adenosina/farmacologia , Marcadores de Afinidade , Chaperonina 60 , Reagentes de Ligações Cruzadas , Dissulfetos/metabolismo , Ditiotreitol/farmacologia , Escherichia coli/metabolismo , Fotoquímica , Plasmídeos , Biossíntese de Proteínas , Conformação Proteica , Processamento de Proteína Pós-Traducional
19.
Nature ; 320(6063): 634-6, 1986.
Artigo em Inglês | MEDLINE | ID: mdl-3010127

RESUMO

Hydrophobic signal sequences direct the translocation of nascent secretory proteins and many membrane proteins across the membrane of the endoplasmic reticulum. Initiation of this process involves the signal recognition particle (SRP), which consists of six polypeptide chains and a 7S RNA and interacts with ribosomes carrying nascent secretory polypeptide chains. In the case of aminoterminal, cleavable signal sequences, in the absence of microsomal membranes it exerts a site-specific translational arrest in vitro. The size of the arrested fragment (60-70 amino-acid residues) suggests that elongation stops when the signal sequence has emerged fully from the ribosome. However, a direct interaction between the signal sequence and SRP has not previously been demonstrated and has even been questioned recently. We now show for the first time a direct interaction between the signal sequence of a secretory protein and a component of SRP, the 45K polypeptide (relative molecular mass (Mr) 54,000). This was achieved by means of a new method of affinity labelling which involves the translational incorporation of an amino acid, carrying a photoreactive group, into nascent polypeptides.


Assuntos
Prolactina/metabolismo , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/metabolismo , Ribonucleoproteínas/metabolismo , Marcadores de Afinidade , Animais , Bovinos , Cães , Técnicas In Vitro , Lisina/metabolismo , Peso Molecular , Partícula de Reconhecimento de Sinal
20.
FEBS Lett ; 197(1-2): 192-8, 1986 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-3512303

RESUMO

The EF-Tu-binding center of the E. coli ribosome has been localized by immunoelectron microscopy after cross-linking of the specific EF-Tu X 70 S ribosomal complex with dimethylsuberimidate. EF-Tu has been found to be in contact with the 50 S subunit in the region of the L7/L12 stalk and with the 30 S subunit in the upper part of its body on the side opposite the top of the ledge (the platform). The EF-Tu position on a model of the 70 S ribosome is presented.


Assuntos
Escherichia coli/ultraestrutura , Fator Tu de Elongação de Peptídeos/metabolismo , Ribossomos/metabolismo , Sítios de Ligação de Anticorpos , Reagentes de Ligações Cruzadas/farmacologia , Dimetil Suberimidato/farmacologia , Técnicas Imunológicas , Substâncias Macromoleculares , Microscopia Eletrônica , Modelos Estruturais , Fator Tu de Elongação de Peptídeos/imunologia , Ribossomos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA