Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Commun ; 13(1): 5198, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057693

RESUMO

Primary aldosteronism affects up to 10% of hypertensive patients and is responsible for treatment resistance and increased cardiovascular risk. Here we perform a genome-wide association study in a discovery cohort of 562 cases and 950 controls and identify three main loci on chromosomes 1, 13 and X; associations on chromosome 1 and 13 are replicated in a second cohort and confirmed by a meta-analysis involving 1162 cases and 3296 controls. The association on chromosome 13 is specific to men and stronger in bilateral adrenal hyperplasia than aldosterone producing adenoma. Candidate genes located within the two loci, CASZ1 and RXFP2, are expressed in human and mouse adrenals in different cell clusters. Their overexpression in adrenocortical cells suppresses mineralocorticoid output under basal and stimulated conditions, without affecting cortisol biosynthesis. Our study identifies the first risk loci for primary aldosteronism and highlights new mechanisms for the development of aldosterone excess.


Assuntos
Neoplasias do Córtex Suprarrenal , Adenoma Adrenocortical , Hiperaldosteronismo , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/cirurgia , Adrenalectomia , Adenoma Adrenocortical/genética , Adenoma Adrenocortical/cirurgia , Aldosterona , Animais , Proteínas de Ligação a DNA/genética , Estudo de Associação Genômica Ampla , Humanos , Hiperaldosteronismo/genética , Masculino , Camundongos , Fatores de Transcrição/genética
2.
J Clin Endocrinol Metab ; 107(2): 419-434, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34570225

RESUMO

CONTEXT: Aldosterone-producing adenomas (APAs) are a common cause of primary aldosteronism (PA). Despite the discovery of somatic mutations in APA and the characterization of multiple factors regulating adrenal differentiation and function, the sequence of events leading to APA formation remains to be determined. OBJECTIVE: We investigated the role of Wnt/ß-catenin and adrenocorticotropin signaling, as well as elements of paracrine regulation of aldosterone biosynthesis in adrenals with APA and their relationship to intratumoral heterogeneity and mutational status. METHODS: We analyzed the expression of aldosterone-synthase (CYP11B2), CYP17A1, ß-catenin, melanocortin type 2 receptor (MC2R), phosphorlyated cAMP response element-binding protein (pCREB), tryptase, S100, CD34 by multiplex immunofluorescence, and immunohistochemistry-guided reverse transcription-quantitative polymerase chain reaction. Eleven adrenals with APA and 1 with micronodular hyperplasia from patients with PA were analyzed. Main outcome measures included localization of CYP11B2, CYP17A1, ß-catenin, MC2R, pCREB, tryptase, S100, CD34 in APA and aldosterone-producing cell clusters (APCCs). RESULTS: Immunofluorescence revealed abundant mast cells and a dense vascular network in APA, independent of mutational status. Within APA, mast cells were localized in areas expressing CYP11B2 and were rarely colocalized with nerve fibers, suggesting that their degranulation is not controlled by innervation. In these same areas, ß-catenin was activated, suggesting a zona glomerulosa cell identity. In heterogeneous APA with KCNJ5 mutations, MC2R and vascular endothelial growth factor A expression was higher in areas expressing CYP11B2. A similar pattern was observed in APCC, with high expression of CYP11B2, activated ß-catenin, and numerous mast cells. CONCLUSION: Our results suggest that aldosterone-producing structures in adrenals with APA share common molecular characteristics and cellular environment, despite different mutation status, suggesting common developmental mechanisms.


Assuntos
Adenoma/metabolismo , Neoplasias do Córtex Suprarrenal/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Hiperaldosteronismo/metabolismo , Via de Sinalização Wnt , Adenoma/complicações , Adenoma/genética , Adenoma/cirurgia , Córtex Suprarrenal/metabolismo , Córtex Suprarrenal/patologia , Córtex Suprarrenal/cirurgia , Neoplasias do Córtex Suprarrenal/complicações , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/cirurgia , Adrenalectomia , Aldosterona/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Humanos , Hiperaldosteronismo/genética , Hiperaldosteronismo/cirurgia , Mutação , Comunicação Parácrina , beta Catenina/metabolismo
3.
Hypertension ; 75(4): 1034-1044, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32114847

RESUMO

Aldosterone-producing adenoma (APA) cause primary aldosteronism-the most frequent form of secondary hypertension. Somatic mutations in genes coding for ion channels and ATPases are found in APA and in aldosterone-producing cell clusters. We investigated the genetic, cellular, and molecular heterogeneity of different aldosterone-producing structures in adrenals with APA, to get insight into the mechanisms driving their development and to investigate their clinical and biochemical correlates. Genetic analysis of APA, aldosterone-producing cell clusters, and secondary nodules was performed in adrenal tissues from 49 patients by next-generation sequencing following CYP11B2 immunohistochemistry. Results were correlated with clinical and biochemical characteristics of patients, steroid profiles, and histological features of the tumor and adjacent adrenal cortex. Somatic mutations were identified in 93.75% of APAs. Adenoma carrying KCNJ5 mutations had more clear cells and cells expressing CYP11B1, and fewer cells expressing CYP11B2 or activated ß-catenin, compared with other mutational groups. 18-hydroxycortisol and 18-oxocortisol were higher in patients carrying KCNJ5 mutations and correlated with histological features of adenoma; however, mutational status could not be predicted using steroid profiling. Heterogeneous CYP11B2 expression in KCNJ5-mutated adenoma was not associated with genetic heterogeneity. Different mutations were identified in secondary nodules expressing aldosterone synthase and in independent aldosterone-producing cell clusters from adrenals with adenoma; known KCNJ5 mutations were identified in 5 aldosterone-producing cell clusters. Genetic heterogeneity in different aldosterone-producing structures in the same adrenal suggests complex mechanisms underlying APA development.


Assuntos
Neoplasias do Córtex Suprarrenal/metabolismo , Glândulas Suprarrenais/metabolismo , Adenoma Adrenocortical/metabolismo , Aldosterona/metabolismo , Hiperaldosteronismo/metabolismo , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/patologia , Glândulas Suprarrenais/patologia , Adenoma Adrenocortical/genética , Adenoma Adrenocortical/patologia , Adulto , Idoso , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Humanos , Hiperaldosteronismo/genética , Hiperaldosteronismo/patologia , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Mutação , Esteroide 11-beta-Hidroxilase/genética , Esteroide 11-beta-Hidroxilase/metabolismo
4.
Sci Rep ; 9(1): 14677, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31605007

RESUMO

Primary aldosteronism (PA) is the most frequent form of secondary arterial hypertension. Mutations in different genes increase aldosterone production in PA, but additional mechanisms may contribute to increased cell proliferation and aldosterone producing adenoma (APA) development. We performed transcriptome analysis in APA and identified retinoic acid receptor alpha (RARα) signaling as a central molecular network involved in nodule formation. To understand how RARα modulates adrenal structure and function, we explored the adrenal phenotype of male and female Rarα knockout mice. Inactivation of Rarα in mice led to significant structural disorganization of the adrenal cortex in both sexes, with increased adrenal cortex size in female mice and increased cell proliferation in males. Abnormalities of vessel architecture and extracellular matrix were due to decreased Vegfa expression and modifications in extracellular matrix components. On the molecular level, Rarα inactivation leads to inhibition of non-canonical Wnt signaling, without affecting the canonical Wnt pathway nor PKA signaling. Our study suggests that Rarα contributes to the maintenance of normal adrenal cortex structure and cell proliferation, by modulating Wnt signaling. Dysregulation of this interaction may contribute to abnormal cell proliferation, creating a propitious environment for the emergence of specific driver mutations in PA.


Assuntos
Hiperaldosteronismo/genética , Hipertensão/genética , Receptor alfa de Ácido Retinoico/genética , Fator A de Crescimento do Endotélio Vascular/genética , Córtex Suprarrenal/metabolismo , Córtex Suprarrenal/patologia , Adenoma Adrenocortical/genética , Adenoma Adrenocortical/patologia , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Proliferação de Células/genética , Matriz Extracelular/genética , Humanos , Hiperaldosteronismo/patologia , Hipertensão/patologia , Camundongos , Camundongos Knockout , Mutação/genética , Via de Sinalização Wnt/genética
5.
Hypertension ; 66(5): 1014-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26351028

RESUMO

Primary aldosteronism is the most common form of secondary hypertension. Somatic mutations in KCNJ5, ATP1A1, ATP2B3, and CACNA1D are found in aldosterone-producing adenoma. In addition, adrenals with aldosterone-producing adenomas show cortical remodeling and frequently multiple secondary nodules. Our aim was to investigate whether different aldosterone-producing nodules from the same adrenal share the same mutational status. Aldosterone synthase expression was assessed in multinodular adrenals from 27 patients. DNA of 37 aldosterone-producing secondary nodules was extracted from formalin-fixed paraffin-embedded tissues and genotyped for KCNJ5, ATP1A1, ATP2B3, and CACNA1D mutations. Among 17 adrenals with a somatic mutation in the principal nodule, 4 showed the same mutation in a secondary nodule, whereas 10 had no mutation in any of the known genes. In 1 adrenal harboring the KCNJ5 p.Gly151Arg mutation in the principal nodule, the same mutation was present in 2 secondary nodules, but no mutation was found in a third nodule. Finally, in 2 adrenals with a CACNA1D mutation in the principal nodule, a KCNJ5 mutation was identified in the secondary nodule. Among 10 adrenals without mutations in the principal nodule, 1 carried a KCNJ5 mutation in the secondary nodule. No mutations were detected in 7 aldosterone-producing cell clusters from 6 adrenals. No association was observed between the presence of mutations in secondary nodules and clinical parameters. In conclusion, different mutations are found in different aldosterone-producing nodules from the same adrenal, suggesting that somatic mutations are independent events triggered by mechanisms that remain to be identified.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Adenoma Adrenocortical/genética , Aldosterona/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Mutação/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPase Trocadora de Sódio-Potássio/genética , Córtex Suprarrenal/metabolismo , Córtex Suprarrenal/patologia , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/patologia , Adenoma Adrenocortical/metabolismo , Adenoma Adrenocortical/patologia , Adulto , Alelos , Estudos de Coortes , Feminino , Genótipo , Humanos , Hiperaldosteronismo/metabolismo , Hiperaldosteronismo/patologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
6.
PLoS One ; 4(9): e7094, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19763184

RESUMO

The Warburg effect describes how cancer cells down-regulate their aerobic respiration and preferentially use glycolysis to generate energy. To evaluate the link between hypoxia and Warburg effect, we studied mitochondrial electron transport, angiogenesis and glycolysis in pheochromocytomas induced by germ-line mutations in VHL, RET, NF1 and SDH genes. SDH and VHL gene mutations have been shown to lead to the activation of hypoxic response, even in normoxic conditions, a process now referred to as pseudohypoxia. We observed a decrease in electron transport protein expression and activity, associated with increased angiogenesis in SDH- and VHL-related, pseudohypoxic tumors, while stimulation of glycolysis was solely observed in VHL tumors. Moreover, microarray analyses revealed that expression of genes involved in these metabolic pathways is an efficient tool for classification of pheochromocytomas in accordance with the predisposition gene mutated. Our data suggest an unexpected association between pseudohypoxia and loss of p53, which leads to a distinct Warburg effect in VHL-related pheochromocytomas.


Assuntos
Feocromocitoma/genética , Feocromocitoma/fisiopatologia , Adolescente , Adulto , Idoso , Criança , Transporte de Elétrons , Feminino , Genes p53/genética , Mutação em Linhagem Germinativa , Glicólise , Humanos , Hipóxia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Neovascularização Patológica , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação Oxidativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA