Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830765

RESUMO

Fragile X syndrome (FXS) is a genetic cause of intellectual disability and autism spectrum disorder (ASD), associated with social deficits. The mesocorticolimbic system, which includes the prefrontal cortex (PFC), basolateral amygdala (BLA), and nucleus accumbens core (NAcC), is essential for regulating socio-emotional behaviors. We employed optogenetics to compare the functional properties of the BLA→NAcC, PFC→NAcC, and reciprocal PFC↔BLA pathways in Fmr1-/y::Drd1a-tdTomato male mice. In FXS mice, the PFC↔BLA reciprocal pathway was unaffected, while significant synaptic modifications occurred in the BLA/PFC→NAcC pathways. We observed distinct changes in D1 striatal projection neurons (SPNs) and separate modifications in D2 SPNs. In FXS mice, the BLA/PFC→NAcC-D2 SPNs pathways demonstrated heightened synaptic strength. Focusing on the BLA→NAcC pathway, linked to autistic symptoms, we found increased AMPAR and NMDAR currents, and elevated spine density in D2 SPNs. Conversely, the amplified firing probability of BLA→NAcC-D1 SPNs was not accompanied by increased synaptic strength, AMPAR and NMDAR currents, or spine density. These pathway-specific alterations resulted in an overall enhancement of excitatory-to-spike coupling, a physiologically relevant index of how efficiently excitatory inputs drive neuronal firing, in both BLA→NAcC-D1 and BLA→NAcC-D2 pathways. Finally, the absence of FMRP led to impaired long-term depression specifically in BLA→D1 SPNs. These distinct alterations in synaptic transmission and plasticity within circuits targeting the NAcC highlight the potential role of postsynaptic mechanisms in selected SPNs in the observed circuit-level changes. This research underscores the heightened vulnerability of the NAcC in the context of FMRP deficiency, emphasizing its pivotal role in the pathophysiology of FXS.Significance Statement Fragile X Syndrome is a neurodevelopmental disorder characterized by significant emotional dysregulation and social challenges. The mesocorticolimbic system is a key socioemotional regulator. Nevertheless, its functioning in this condition is still poorly understood. Our study investigates connections between the basolateral amygdala (BLA), prefrontal cortex (PFC), and nucleus accumbens core (NAcC). We observed that while the PFC↔BLA reciprocal connections remained unaffected, their projections onto the NAcC showed target cell-specific changes. Specifically, D2 SPNs exhibited increased synaptic transmission and spine density, whereas D1 SPNs showed heightened firing probability and impaired long-term depression, alongside enhanced neuronal firing efficiency in both SPN types. These findings emphasize the NAcC's crucial role as a neurobiological substrate in the pathophysiology of Fragile X Syndrome.

2.
Biol Sex Differ ; 15(1): 18, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383408

RESUMO

BACKGROUND: Pup-dam ultrasonic vocalizations (USVs) are essential to cognitive and socio-emotional development. In autism and Fragile X Syndrome (FXS), disruptions in pup-dam USV communication hint at a possible connection between abnormal early developmental USV communication and the later emergence of communication and social deficits. METHODS: Here, we gathered USVs from PND 10 FXS pups during a short period of separation from their mothers, encompassing animals of all possible genotypes and both sexes (i.e., Fmr1-/y vs. Fmr1+/y males and Fmr1+/+, +/-, and -/- females). This allowed comparing the influence of sex and gene dosage on pups' communication capabilities. Leveraging DeepSqueak and analyzing vocal patterns, intricate vocal behaviors such as call structure, duration, frequency modulation, and temporal patterns were examined. Furthermore, homing behavior was assessed as a sensitive indicator of early cognitive development and social discrimination. This behavior relies on the use of olfactory and thermal cues to navigate and search for the maternal or nest odor in the surrounding space. RESULTS: The results show that FMRP-deficient pups of both sexes display an increased inclination to vocalize when separated from their mothers, and this behavior is accompanied by significant sex-specific changes in the main features of their USVs as well as in body weight. Analysis of the vocal repertoire and syntactic usage revealed that Fmr1 gene silencing primarily alters the USVs' qualitative composition in males. Moreover, sex-specific effects of Fmr1 silencing on locomotor activity and homing behavior were observed. FMRP deficiency in females increased activity, reduced nest-reaching time, and extended nest time. In males, it prolonged nest-reaching time and reduced nest time without affecting locomotion. CONCLUSIONS: These findings highlight the interplay between Fmr1 gene dosage and sex in influencing communicative and cognitive skills during infancy.


In this study, we investigated ultrasonic vocalizations (USVs) and homing behavior in a mouse model of Fragile X Syndrome (FXS), a leading genetic cause of autism spectrum disorder (ASD) caused by a mutation of the X-chromosome linked Fmr1 gene. Disruptions in pup-dam USV communication and cognitive skills may be linked to the later emergence of communication and social deficits in ASD. USVs were collected from 10-day-old FXS pups of all possible genotypes and both sexes during a short period of separation from their mothers. We utilized DeepSqueak, an advanced deep learning system, to examine vocal patterns and intricate vocal behaviors, including call structure, duration, frequency modulation, and their temporal patterns. Homing, a sensitive indicator of early cognitive development and social discrimination was assessed at P13. The results showed that FXS pups of both sexes displayed an increased inclination to vocalize when separated from their mothers. Examination of the vocal repertoire and its syntactic usage revealed that the silencing of the Fmr1 gene primarily alters the qualitative composition of ultrasonic communication in males. The sex-specific changes observed in USVs were accompanied by modifications in body weight. Regarding homing behavior, the deficiency of FMRP led to opposite deficits in activity, time to reach the nest, and nesting time depending on sex. Taken together, these findings highlight the interplay between Fmr1 gene dosage and sex in shaping communication and cognition during infancy.


Assuntos
Síndrome do Cromossomo X Frágil , Animais , Camundongos , Feminino , Masculino , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/psicologia , Vocalização Animal , Camundongos Knockout , Proteína do X Frágil da Deficiência Intelectual/genética , Cognição , Dosagem de Genes , Modelos Animais de Doenças
3.
Front Cell Neurosci ; 17: 1146647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323585

RESUMO

Introduction: Fragile X syndrome (FXS), resulting from a mutation in the Fmr1 gene, is the most common monogenic cause of autism and inherited intellectual disability. Fmr1 encodes the Fragile X Messenger Ribonucleoprotein (FMRP), and its absence leads to cognitive, emotional, and social deficits compatible with the nucleus accumbens (NAc) dysfunction. This structure is pivotal in social behavior control, consisting mainly of spiny projection neurons (SPNs), distinguished by dopamine D1 or D2 receptor expression, connectivity, and associated behavioral functions. This study aims to examine how FMRP absence differentially affects SPN cellular properties, which is crucial for categorizing FXS cellular endophenotypes. Methods: We utilized a novel Fmr1-/y::Drd1a-tdTomato mouse model, which allows in-situ identification of SPN subtypes in FXS mice. Using RNA-sequencing, RNAScope and ex-vivo patch-clamp in adult male mice NAc, we comprehensively compared the intrinsic passive and active properties of SPN subtypes. Results: Fmr1 transcripts and their gene product, FMRP, were found in both SPNs subtypes, indicating potential cell-specific functions for Fmr1. The study found that the distinguishing membrane properties and action potential kinetics typically separating D1- from D2-SPNs in wild-type mice were either reversed or abolished in Fmr1-/y::Drd1a-tdTomato mice. Interestingly, multivariate analysis highlighted the compound effects of Fmr1 ablation by disclosing how the phenotypic traits distinguishing each cell type in wild-type mice were altered in FXS. Discussion: Our results suggest that the absence of FMRP disrupts the standard dichotomy characterizing NAc D1- and D2-SPNs, resulting in a homogenous phenotype. This shift in cellular properties could potentially underpin select aspects of the pathology observed in FXS. Therefore, understanding the nuanced effects of FMRP absence on SPN subtypes can offer valuable insights into the pathophysiology of FXS, opening avenues for potential therapeutic strategies.

4.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562259

RESUMO

Cannabis use among pregnant women is increasing worldwide along with permissive sociocultural attitudes toward it. Prenatal cannabis exposure (PCE), however, is associated with adverse outcome among offspring, ranging from reduced birth weight to child psychopathology. We have previously shown that male rat offspring prenatally exposed to Δ9-tetrahydrocannabinol (THC), a rat model of PCE, exhibit extensive molecular, cellular, and synaptic changes in dopamine neurons of the ventral tegmental area (VTA), resulting in a susceptible mesolimbic dopamine system associated with a psychotic-like endophenotype. This phenotype only reveals itself upon a single exposure to THC in males but not females. Here, we characterized the impact of PCE on female behaviors and mesolimbic dopamine system function by combining in vivo single-unit extracellular recordings in anesthetized animals and ex vivo patch clamp recordings, along with neurochemical and behavioral analyses. We find that PCE female offspring do not show any spontaneous or THC-induced behavioral disease-relevant phenotypes. The THC-induced increase in dopamine levels in nucleus accumbens was reduced in PCE female offspring, even when VTA dopamine activity in vivo and ex vivo did not differ compared to control. These findings indicate that PCE impacts mesolimbic dopamine function and its related behavioral domains in a sex-dependent manner and warrant further investigations to decipher the mechanisms determining this sex-related protective effect from intrauterine THC exposure.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Dronabinol/toxicidade , Sistema Límbico/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/patologia , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Feminino , Alucinógenos/toxicidade , Sistema Límbico/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Área Tegmentar Ventral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA