Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328230

RESUMO

Mutations in ARX , an X-linked gene, are implicated in a wide spectrum of neurological disorders including patients who have intellectual disability and epilepsy. Mouse models have shown that Arx is critical for cortical development and interneuron migration, however they do not recapitulate the full phenotype observed in patients. Moreover, the epilepsy in many patients with poly-alanine tract expansion (PAE) mutations in ARX show pharmacoresistance, emphasizing the need to develop new treatments. Here, we used human neural organoid models to study the consequences of PAE mutations, one of the most prevalent mutations in ARX . We found that PAE mutations result in an early increase in radial glia cells and intermediate progenitor cells, and premature differentiation leading to a loss of cortical neurons at later timepoints. Moreover, ARX expression is upregulated in CO derived from patient at 30 DIV which alters the expression of CDKN1C , SFRP1 , DLK1 and FABP7 , among others. We also found a cell autonomously enhanced interneuron migration, which can be rescued by CXCR4 inhibition. Furthermore, ARX PAE assembloids had hyper-activity and synchrony evident from the early stages. These data provide novel insights to the pathogenesis of these and likely related human neurological disorders and identifies a critical window for therapeutic interventions.

2.
Cell Death Dis ; 13(8): 705, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963860

RESUMO

Seizures represent a frequent symptom in gliomas and significantly impact patient morbidity and quality of life. Although the pathogenesis of tumor-related seizures is not fully understood, accumulating evidence indicates a key role of the peritumoral microenvironment. Brain cancer cells interact with neurons by forming synapses with them and by releasing exosomes, cytokines, and other small molecules. Strong interactions among neurons often lead to the synchronization of their activity. In this paper, we used an in vitro model to investigate the role of exosomes released by glioma cell lines and by patient-derived glioma stem cells (GSCs). The addition of exosomes released by U87 glioma cells to neuronal cultures at day in vitro (DIV) 4, when neurons are not yet synchronous, induces synchronization. At DIV 7-12 neurons become highly synchronous, and the addition of the same exosomes disrupts synchrony. By combining Ca2+ imaging, electrical recordings from single neurons with patch-clamp electrodes, substrate-integrated microelectrode arrays, and immunohistochemistry, we show that synchronization and de-synchronization are caused by the combined effect of (i) the formation of new neuronal branches, associated with a higher expression of Arp3, (ii) the modification of synaptic efficiency, and (iii) a direct action of exosomes on the electrical properties of neurons, more evident at DIV 7-12 when the threshold for spike initiation is significantly reduced. At DIV 7-12 exosomes also selectively boost glutamatergic signaling by increasing the number of excitatory synapses. Remarkably, de-synchronization was also observed with exosomes released by glioma-associated stem cells (GASCs) from patients with low-grade glioma but not from patients with high-grade glioma, where a more variable outcome was observed. These results show that exosomes released from glioma modify the electrical properties of neuronal networks and that de-synchronization caused by exosomes from low-grade glioma can contribute to the neurological pathologies of patients with brain cancers.


Assuntos
Neoplasias Encefálicas , Exossomos , Glioma , Neoplasias Encefálicas/patologia , Exossomos/metabolismo , Glioma/patologia , Humanos , Neurônios/patologia , Qualidade de Vida , Convulsões/metabolismo , Microambiente Tumoral
3.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163265

RESUMO

FOXG1 is an ancient transcription factor gene mastering telencephalic development. A number of distinct structural FOXG1 mutations lead to the "FOXG1 syndrome", a complex and heterogeneous neuropathological entity, for which no cure is presently available. Reconstruction of primary neurodevelopmental/physiological anomalies evoked by these mutations is an obvious pre-requisite for future, precision therapy of such syndrome. Here, as a proof-of-principle, we functionally scored three FOXG1 neuropathogenic alleles, FOXG1G224S, FOXG1W308X, and FOXG1N232S, against their healthy counterpart. Specifically, we delivered transgenes encoding for them to dedicated preparations of murine pallial precursors and quantified their impact on selected neurodevelopmental and physiological processes mastered by Foxg1: pallial stem cell fate choice, proliferation of neural committed progenitors, neuronal architecture, neuronal activity, and their molecular correlates. Briefly, we found that FOXG1G224S and FOXG1W308X generally performed as a gain- and a loss-of-function-allele, respectively, while FOXG1N232S acted as a mild loss-of-function-allele or phenocopied FOXG1WT. These results provide valuable hints about processes misregulated in patients heterozygous for these mutations, to be re-addressed more stringently in patient iPSC-derivative neuro-organoids. Moreover, they suggest that murine pallial cultures may be employed for fast multidimensional profiling of novel, human neuropathogenic FOXG1 alleles, namely a step propedeutic to timely delivery of therapeutic precision treatments.


Assuntos
Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Alelos , Animais , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica/genética , Frequência do Gene/genética , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neurônios/metabolismo , Cultura Primária de Células , Estudo de Prova de Conceito
5.
iScience ; 23(10): 101589, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33083749

RESUMO

Neuromorphic systems take inspiration from the principles of biological information processing to form hardware platforms that enable the large-scale implementation of neural networks. The recent years have seen both advances in the theoretical aspects of spiking neural networks for their use in classification and control tasks and a progress in electrophysiological methods that is pushing the frontiers of intelligent neural interfacing and signal processing technologies. At the forefront of these new technologies, artificial and biological neural networks are tightly coupled, offering a novel "biohybrid" experimental framework for engineers and neurophysiologists. Indeed, biohybrid systems can constitute a new class of neuroprostheses opening important perspectives in the treatment of neurological disorders. Moreover, the use of biologically plausible learning rules allows forming an overall fault-tolerant system of co-developing subsystems. To identify opportunities and challenges in neuromorphic biohybrid systems, we discuss the field from the perspectives of neurobiology, computational neuroscience, and neuromorphic engineering.

6.
PLoS Comput Biol ; 16(7): e1008087, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32701953

RESUMO

The dynamics and the sharp onset of action potential (AP) generation have recently been the subject of intense experimental and theoretical investigations. According to the resistive coupling theory, an electrotonic interplay between the site of AP initiation in the axon and the somato-dendritic load determines the AP waveform. This phenomenon not only alters the shape of APs recorded at the soma, but also determines the dynamics of excitability across a variety of time scales. Supporting this statement, here we generalize a previous numerical study and extend it to the quantification of the input-output gain of the neuronal dynamical response. We consider three classes of multicompartmental mathematical models, ranging from ball-and-stick simplified descriptions of neuronal excitability to 3D-reconstructed biophysical models of excitatory neurons of rodent and human cortical tissue. For each model, we demonstrate that increasing the distance between the axonal site of AP initiation and the soma markedly increases the bandwidth of neuronal response properties. We finally consider the Liquid State Machine paradigm, exploring the impact of altering the site of AP initiation at the level of a neuronal population, and demonstrate that an optimal distance exists to boost the computational performance of the network in a simple classification task.


Assuntos
Potenciais de Ação , Segmento Inicial do Axônio/fisiologia , Axônios/fisiologia , Neurônios/fisiologia , Algoritmos , Animais , Córtex Cerebral/patologia , Biologia Computacional , Simulação por Computador , Dendritos/fisiologia , Humanos , Imageamento Tridimensional , Modelos Lineares , Aprendizado de Máquina , Modelos Neurológicos , Neocórtex/fisiologia , Canais de Potássio/fisiologia , Ratos
7.
Front Cell Neurosci ; 14: 118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625063

RESUMO

The cortical layer 1 (L1) contains a population of GABAergic interneurons, considered a key component of information integration, processing, and relaying in neocortical networks. In fact, L1 interneurons combine top-down information with feed-forward sensory inputs in layer 2/3 and 5 pyramidal cells (PCs), while filtering their incoming signals. Despite the importance of L1 for network emerging phenomena, little is known on the dynamics of the spike initiation and the encoding properties of its neurons. Using acute brain tissue slices from the rat neocortex, combined with the analysis of an existing database of model neurons, we investigated the dynamical transfer properties of these cells by sampling an entire population of known "electrical classes" and comparing experiments and model predictions. We found the bandwidth of spike initiation to be significantly narrower than in L2/3 and 5 PCs, with values below 100 cycle/s, but without significant heterogeneity in the cell response properties across distinct electrical types. The upper limit of the neuronal bandwidth was significantly correlated to the mean firing rate, as anticipated from theoretical studies but not reported for PCs. At high spectral frequencies, the magnitude of the neuronal response attenuated as a power-law, with an exponent significantly smaller than what was reported for pyramidal neurons and reminiscent of the dynamics of a "leaky" integrate-and-fire model of spike initiation. Finally, most of our in vitro results matched quantitatively the numerical simulations of the models as a further contribution to independently validate the models against novel experimental data.

8.
Front Neurosci ; 14: 405, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508562

RESUMO

The technology for producing microelectrode arrays (MEAs) has been developing since the 1970s and extracellular electrophysiological recordings have become well established in neuroscience, drug screening and cardiology. MEAs allow monitoring of long-term spiking activity of large ensembles of excitable cells noninvasively with high temporal resolution and mapping its spatial features. However, their inability to register subthreshold potentials, such as intrinsic membrane oscillations and synaptic potentials, has inspired a number of laboratories to search for alternatives to bypass the restrictions and/or increase the sensitivity of microelectrodes. In this study, we present the fabrication and in vitro experimental validation of arrays of PEDOT:PSS-coated 3D ultramicroelectrodes, with the best-reported combination of small size and low electrochemical impedance. We observed that this type of microelectrode does not alter neuronal network biological properties, improves the signal quality of extracellular recordings and exhibits higher selectivity toward single unit recordings. With fabrication processes simpler than those reported in the literature for similar electrodes, our technology is a promising tool for study of neuronal networks.

9.
Mol Brain ; 13(1): 78, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430072

RESUMO

Neuronal progenitor cells (NPC) play an essential role in homeostasis of the central nervous system (CNS). Considering their ability to differentiate into specific lineages, their manipulation and control could have a major therapeutic impact for those CNS injuries or degenerative diseases characterized by neuronal cell loss. In this work, we established an in vitro co-culture and tested the ability of foetal NPC (fNPC) to integrate among post-mitotic hippocampal neurons and contribute to the electrical activity of the resulting networks. We performed extracellular electrophysiological recordings of the activity of neuronal networks and compared the properties of spontaneous spiking in hippocampal control cultures (HCC), fNPC, and mixed circuitries ex vivo. We further employed patch-clamp intracellular recordings to examine single-cell excitability. We report of the capability of fNPC to mature when combined to hippocampal neurons, shaping the profile of network activity, a result suggestive of newly formed connectivity ex vivo.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Hipocampo/citologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Técnicas de Cocultura , Hipocampo/fisiologia , Neurogênese , Neurônios/citologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Análise de Célula Única
10.
Cell Rep ; 30(3): 630-641.e5, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31968242

RESUMO

In the neocortex, synaptic inhibition shapes all forms of spontaneous and sensory evoked activity. Importantly, inhibitory transmission is highly plastic, but the functional role of inhibitory synaptic plasticity is unknown. In the mouse barrel cortex, activation of layer (L) 2/3 pyramidal neurons (PNs) elicits strong feedforward inhibition (FFI) onto L5 PNs. We find that FFI involving parvalbumin (PV)-expressing cells is strongly potentiated by postsynaptic PN burst firing. FFI plasticity modifies the PN excitation-to-inhibition (E/I) ratio, strongly modulates PN gain, and alters information transfer across cortical layers. Moreover, our LTPi-inducing protocol modifies firing of L5 PNs and alters the temporal association of PN spikes to γ-oscillations both in vitro and in vivo. All of these effects are captured by unbalancing the E/I ratio in a feedforward inhibition circuit model. Altogether, our results indicate that activity-dependent modulation of perisomatic inhibitory strength effectively influences the participation of single principal cortical neurons to cognition-relevant network activity.


Assuntos
Neocórtex/fisiologia , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Feminino , Ritmo Gama/efeitos da radiação , Luz , Potenciação de Longa Duração/fisiologia , Potenciação de Longa Duração/efeitos da radiação , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Inibição Neural/efeitos da radiação , Plasticidade Neuronal/efeitos da radiação , Células Piramidais/fisiologia , Células Piramidais/efeitos da radiação , Sinapses/efeitos da radiação , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
11.
Cereb Cortex ; 30(1): 31-46, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30958540

RESUMO

The Fragile X mental retardation protein (FMRP) is involved in many cellular processes and it regulates synaptic and network development in neurons. Its absence is known to lead to intellectual disability, with a wide range of comorbidities including autism. Over the past decades, FMRP research focused on abnormalities both in glutamatergic and GABAergic signaling, and an altered balance between excitation and inhibition has been hypothesized to underlie the clinical consequences of absence of the protein. Using Fmrp knockout mice, we studied an in vitro model of cortical microcircuitry and observed that the loss of FMRP largely affected the electrophysiological correlates of network development and maturation but caused less alterations in single-cell phenotypes. The loss of FMRP also caused a structural increase in the number of excitatory synaptic terminals. Using a mathematical model, we demonstrated that the combination of an increased excitation and reduced inhibition describes best our experimental observations during the ex vivo formation of the network connections.


Assuntos
Córtex Cerebral/fisiopatologia , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Redes Neurais de Computação , Vias Neurais/fisiopatologia
12.
J Neurosci ; 39(39): 7648-7663, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346031

RESUMO

Correlated electrical activity in neurons is a prominent characteristic of cortical microcircuits. Despite a growing amount of evidence concerning both spike-count and subthreshold membrane potential pairwise correlations, little is known about how different types of cortical neurons convert correlated inputs into correlated outputs. We studied pyramidal neurons and two classes of GABAergic interneurons of layer 5 in neocortical brain slices obtained from rats of both sexes, and we stimulated them with biophysically realistic correlated inputs, generated using dynamic clamp. We found that the physiological differences between cell types manifested unique features in their capacity to transfer correlated inputs. We used linear response theory and computational modeling to gain clear insights into how cellular properties determine both the gain and timescale of correlation transfer, thus tying single-cell features with network interactions. Our results provide further ground for the functionally distinct roles played by various types of neuronal cells in the cortical microcircuit.SIGNIFICANCE STATEMENT No matter how we probe the brain, we find correlated neuronal activity over a variety of spatial and temporal scales. For the cerebral cortex, significant evidence has accumulated on trial-to-trial covariability in synaptic inputs activation, subthreshold membrane potential fluctuations, and output spike trains. Although we do not yet fully understand their origin and whether they are detrimental or beneficial for information processing, we believe that clarifying how correlations emerge is pivotal for understanding large-scale neuronal network dynamics and computation. Here, we report quantitative differences between excitatory and inhibitory cells, as they relay input correlations into output correlations. We explain this heterogeneity by simple biophysical models and provide the most experimentally validated test of a theory for the emergence of correlations.


Assuntos
Interneurônios/fisiologia , Modelos Neurológicos , Neocórtex/fisiologia , Células Piramidais/fisiologia , Animais , Feminino , Técnicas In Vitro , Masculino , Ratos
13.
PeerJ ; 7: e6796, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31065460

RESUMO

Neurons are embedded in an extracellular matrix (ECM), which functions both as a scaffold and as a regulator of neuronal function. The ECM is in turn dynamically altered through the action of serine proteases, which break down its constituents. This pathway has been implicated in the regulation of synaptic plasticity and of neuronal intrinsic excitability. In this study, we determined the short-term effects of interfering with proteolytic processes in the ECM, with a newly developed serine protease inhibitor. We monitored the spontaneous electrophysiological activity of in vitro primary rat cortical cultures, using microelectrode arrays. While pharmacological inhibition at a low dosage had no significant effect, at elevated concentrations it altered significantly network synchronization and functional connectivity but left unaltered single-cell electrical properties. These results suggest that serine protease inhibition affects synaptic properties, likely through its actions on the ECM.

14.
Elife ; 72018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30561325

RESUMO

It is generally assumed that human intelligence relies on efficient processing by neurons in our brain. Although grey matter thickness and activity of temporal and frontal cortical areas correlate with IQ scores, no direct evidence exists that links structural and physiological properties of neurons to human intelligence. Here, we find that high IQ scores and large temporal cortical thickness associate with larger, more complex dendrites of human pyramidal neurons. We show in silico that larger dendritic trees enable pyramidal neurons to track activity of synaptic inputs with higher temporal precision, due to fast action potential kinetics. Indeed, we find that human pyramidal neurons of individuals with higher IQ scores sustain fast action potential kinetics during repeated firing. These findings provide the first evidence that human intelligence is associated with neuronal complexity, action potential kinetics and efficient information transfer from inputs to output within cortical neurons.


Assuntos
Encéfalo/fisiologia , Inteligência , Células Piramidais/fisiologia , Potenciais de Ação , Adolescente , Adulto , Idoso , Simulação por Computador , Feminino , Humanos , Testes de Inteligência , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Adulto Jovem
15.
Nat Commun ; 9(1): 4882, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451819

RESUMO

The visual system is composed of diverse cell types that encode distinct aspects of the visual scene and may form separate processing channels. Here we present further evidence for that hypothesis whereby functional cell groups in the dorsal lateral geniculate nucleus (dLGN) are differentially modulated during behavior. Using simultaneous multi-electrode recordings in dLGN and primary visual cortex (V1) of behaving mice, we characterized the impact of locomotor activity on response amplitude, variability, correlation and spatiotemporal tuning. Locomotion strongly impacts the amplitudes of dLGN and V1 responses but the effects on variability and correlations are relatively minor. With regards to tunings, locomotion enhances dLGN responses to high temporal frequencies, preferentially affecting ON transient cells and neurons with nonlinear responses to high spatial frequencies. Channel specific modulations may serve to highlight particular visual inputs during active behaviors.


Assuntos
Corpos Geniculados/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Linhagem da Célula/fisiologia , Eletrodos Implantados , Corpos Geniculados/citologia , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/classificação , Neurônios/citologia , Técnicas Estereotáxicas , Córtex Visual/citologia , Vias Visuais/citologia
16.
Nat Nanotechnol ; 13(8): 755-764, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29892019

RESUMO

The use of graphene-based materials to engineer sophisticated biosensing interfaces that can adapt to the central nervous system requires a detailed understanding of how such materials behave in a biological context. Graphene's peculiar properties can cause various cellular changes, but the underlying mechanisms remain unclear. Here, we show that single-layer graphene increases neuronal firing by altering membrane-associated functions in cultured cells. Graphene tunes the distribution of extracellular ions at the interface with neurons, a key regulator of neuronal excitability. The resulting biophysical changes in the membrane include stronger potassium ion currents, with a shift in the fraction of neuronal firing phenotypes from adapting to tonically firing. By using experimental and theoretical approaches, we hypothesize that the graphene-ion interactions that are maximized when single-layer graphene is deposited on electrically insulating substrates are crucial to these effects.


Assuntos
Materiais Biocompatíveis/farmacologia , Comunicação Celular , Grafite/farmacologia , Nanoestruturas , Rede Nervosa/fisiologia , Neurônios/fisiologia , Potenciais de Ação , Animais , Materiais Biocompatíveis/química , Células Cultivadas , Grafite/química , Nanoestruturas/química , Rede Nervosa/citologia , Neurônios/citologia , Potássio/metabolismo , Ratos
17.
Cell Rep ; 23(9): 2732-2743, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29847802

RESUMO

The transplantation of pluripotent stem-cell-derived neurons constitutes a promising avenue for the treatment of several brain diseases. However, their potential for the repair of the cerebral cortex remains unclear, given its complexity and neuronal diversity. Here, we show that human visual cortical cells differentiated from embryonic stem cells can be transplanted and can integrate successfully into the lesioned mouse adult visual cortex. The transplanted human neurons expressed the appropriate repertoire of markers of six cortical layers, projected axons to specific visual cortical targets, and were synaptically active within the adult brain. Moreover, transplant maturation and integration were much less efficient following transplantation into the lesioned motor cortex, as previously observed for transplanted mouse cortical neurons. These data constitute an important milestone for the potential use of human PSC-derived cortical cells for the reassembly of cortical circuits and emphasize the importance of cortical areal identity for successful transplantation.


Assuntos
Envelhecimento/patologia , Neurônios/transplante , Células-Tronco Pluripotentes/citologia , Córtex Visual/patologia , Animais , Axônios/metabolismo , Biomarcadores/metabolismo , Córtex Cerebral/citologia , Células-Tronco Embrionárias Humanas/citologia , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Especificidade de Órgãos , Sinapses/metabolismo , Telencéfalo/metabolismo
18.
Eur J Neurosci ; 47(1): 17-32, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29068098

RESUMO

Ensembles of cortical neurons can track fast-varying inputs and relay them in their spike trains, far beyond the cut-off imposed by membrane passive electrical properties and mean firing rates. Initially explored in silico and later demonstrated experimentally, investigating how neurons respond to sinusoidally modulated stimuli provides a deeper insight into spike initiation mechanisms and information processing than conventional F-I curve methodologies. Besides net membrane currents, physiological synaptic inputs can also induce a stimulus-dependent modulation of the total membrane conductance, which is not reproduced by standard current-clamp protocols. Here, we investigated whether rat cortical neurons can track fast temporal modulations over a noisy conductance background. We also determined input-output transfer properties over a range of conditions, including: distinct presynaptic activation rates, postsynaptic firing rates and variability and type of temporal modulations. We found a very broad signal transfer bandwidth across all conditions, similar large cut-off frequencies and power-law attenuations of fast-varying inputs. At slow and intermediate input modulations, the response gain decreased for increasing output mean firing rates. The gain also decreased significantly for increasing intensities of background synaptic activity, thus generalising earlier studies on F-I curves. We also found a direct correlation between the action potentials' onset rapidness and the neuronal bandwidth. Our novel results extend previous investigations of dynamical response properties to non-stationary and conductance-driven conditions, and provide computational neuroscientists with a novel set of observations that models must capture when aiming to replicate cortical cellular excitability.


Assuntos
Potenciais de Ação , Neocórtex/fisiologia , Células Piramidais/fisiologia , Animais , Feminino , Masculino , Neocórtex/citologia , Ratos , Ratos Wistar , Tempo de Reação , Potenciais Sinápticos
19.
Front Neurosci ; 12: 953, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30697140

RESUMO

During the last decades, neuroscientists have increasingly exploited a variety of artificial, de-novo synthesized materials with controlled nano-sized features. For instance, a renewed interest in the development of prostheses or neural interfaces was driven by the availability of novel nanomaterials that enabled the fabrication of implantable bioelectronics interfaces with reduced side effects and increased integration with the target biological tissue. The peculiar physical-chemical properties of nanomaterials have also contributed to the engineering of novel imaging devices toward sophisticated experimental settings, to smart fabricated scaffolds and microelectrodes, or other tools ultimately aimed at a better understanding of neural tissue functions. In this review, we focus on nanomaterials and specifically on carbon-based nanomaterials, such as carbon nanotubes (CNTs) and graphene. While these materials raise potential safety concerns, they represent a tremendous technological opportunity for the restoration of neuronal functions. We then describe nanotools such as nanowires and nano-modified MEA for high-performance electrophysiological recording and stimulation of neuronal electrical activity. We finally focus on the fabrication of three-dimensional synthetic nanostructures, used as substrates to interface biological cells and tissues in vitro and in vivo.

20.
Cell Stem Cell ; 20(3): 360-373.e7, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-27889318

RESUMO

Whether new neurons are added in the postnatal cerebral cortex is still debated. Here, we report that the meninges of perinatal mice contain a population of neurogenic progenitors formed during embryonic development that migrate to the caudal cortex and differentiate into Satb2+ neurons in cortical layers II-IV. The resulting neurons are electrically functional and integrated into local microcircuits. Single-cell RNA sequencing identified meningeal cells with distinct transcriptome signatures characteristic of (1) neurogenic radial glia-like cells (resembling neural stem cells in the SVZ), (2) neuronal cells, and (3) a cell type with an intermediate phenotype, possibly representing radial glia-like meningeal cells differentiating to neuronal cells. Thus, we have identified a pool of embryonically derived radial glia-like cells present in the meninges that migrate and differentiate into functional neurons in the neonatal cerebral cortex.


Assuntos
Diferenciação Celular , Movimento Celular , Córtex Cerebral/citologia , Meninges/citologia , Neurogênese , Neuroglia/citologia , Neurônios/citologia , Animais , Animais Recém-Nascidos , Linhagem da Célula , Embrião de Mamíferos/citologia , Transportador 1 de Aminoácido Excitatório/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Nestina/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Reprodutibilidade dos Testes , Análise de Célula Única , Esferoides Celulares/citologia , Coloração e Rotulagem , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA