Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(3): e17245, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511487

RESUMO

The seasonal coupling of plant and soil microbial nutrient demands is crucial for efficient ecosystem nutrient cycling and plant production, especially in strongly seasonal alpine ecosystems. Yet, how these seasonal nutrient cycling processes are modified by climate change and what the consequences are for nutrient loss and retention in alpine ecosystems remain unclear. Here, we explored how two pervasive climate change factors, reduced snow cover and shrub expansion, interactively modify the seasonal coupling of plant and soil microbial nitrogen (N) cycling in alpine grasslands, which are warming at double the rate of the global average. We found that the combination of reduced snow cover and shrub expansion disrupted the seasonal coupling of plant and soil N-cycling, with pronounced effects in spring (shortly after snow melt) and autumn (at the onset of plant senescence). In combination, both climate change factors decreased plant organic N-uptake by 70% and 82%, soil microbial biomass N by 19% and 38% and increased soil denitrifier abundances by 253% and 136% in spring and autumn, respectively. Shrub expansion also individually modified the seasonality of soil microbial community composition and stoichiometry towards more N-limited conditions and slower nutrient cycling in spring and autumn. In winter, snow removal markedly reduced the fungal:bacterial biomass ratio, soil N pools and shifted bacterial community composition. Taken together, our findings suggest that interactions between climate change factors can disrupt the temporal coupling of plant and soil microbial N-cycling processes in alpine grasslands. This could diminish the capacity of these globally widespread alpine ecosystems to retain N and support plant productivity under future climate change.


Assuntos
Ecossistema , Solo , Mudança Climática , Estações do Ano , Microbiologia do Solo , Nutrientes
2.
PLoS One ; 10(9): e0135752, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26332317

RESUMO

The tree-killing mountain pine beetle (Dendroctonus ponderosae Hopkins) is an important disturbance agent of western North American forests and recent outbreaks have affected tens of millions of hectares of trees. Most western North American pines (Pinus spp.) are hosts and are successfully attacked by mountain pine beetles whereas a handful of pine species are not suitable hosts and are rarely attacked. How pioneering females locate host trees is not well understood, with prevailing theory involving random landings and/or visual cues. Here we show that female mountain pine beetles orient toward volatile organic compounds (VOCs) from host limber pine (Pinus flexilis James) and away from VOCs of non-host Great Basin bristlecone pine (Pinus longaeva Bailey) in a Y-tube olfactometer. When presented with VOCs of both trees, females overwhelmingly choose limber pine over Great Basin bristlecone pine. Analysis of VOCs collected from co-occurring limber and Great Basin bristlecone pine trees revealed only a few quantitative differences. Noticeable differences included the monoterpenes 3-carene and D-limonene which were produced in greater amounts by host limber pine. We found no evidence that 3-carene is important for beetles when selecting trees, it was not attractive alone and its addition to Great Basin bristlecone pine VOCs did not alter female selection. However, addition of D-limonene to Great Basin bristlecone pine VOCs disrupted the ability of beetles to distinguish between tree species. When presented alone, D-limonene did not affect behavior, suggesting that the response is mediated by multiple compounds. A better understanding of host selection by mountain pine beetles could improve strategies for managing this important forest insect. Moreover, elucidating how Great Basin bristlecone pine escapes attack by mountain pine beetles could provide insight into mechanisms underlying the incredible longevity of this tree species.


Assuntos
Besouros/fisiologia , Cicloexenos/metabolismo , Monoterpenos/metabolismo , Pinus/fisiologia , Terpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Monoterpenos Bicíclicos , Sinais (Psicologia) , Feminino , Herbivoria , Limoneno , Masculino , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA