Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Comput Biol ; 20(5): e1012098, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38820350

RESUMO

Multi-drug combinations to treat bacterial populations are at the forefront of approaches for infection control and prevention of antibiotic resistance. Although the evolution of antibiotic resistance has been theoretically studied with mathematical population dynamics models, extensions to spatial dynamics remain rare in the literature, including in particular spatial evolution of multi-drug resistance. In this study, we propose a reaction-diffusion system that describes the multi-drug evolution of bacteria based on a drug-concentration rescaling approach. We show how the resistance to drugs in space, and the consequent adaptation of growth rate, is governed by a Price equation with diffusion, integrating features of drug interactions and collateral resistances or sensitivities to the drugs. We study spatial versions of the model where the distribution of drugs is homogeneous across space, and where the drugs vary environmentally in a piecewise-constant, linear and nonlinear manner. Although in many evolution models, per capita growth rate is a natural surrogate for fitness, in spatially-extended, potentially heterogeneous habitats, fitness is an emergent property that potentially reflects additional complexities, from boundary conditions to the specific spatial variation of growth rates. Applying concepts from perturbation theory and reaction-diffusion equations, we propose an analytical metric for characterization of average mutant fitness in the spatial system based on the principal eigenvalue of our linear problem, λ1. This enables an accurate translation from drug spatial gradients and mutant antibiotic susceptibility traits to the relative advantage of each mutant across the environment. Our approach allows one to predict the precise outcomes of selection among mutants over space, ultimately from comparing their λ1 values, which encode a critical interplay between growth functions, movement traits, habitat size and boundary conditions. Such mathematical understanding opens new avenues for multi-drug therapeutic optimization.


Assuntos
Antibacterianos , Antibacterianos/farmacologia , Modelos Biológicos , Farmacorresistência Bacteriana Múltipla/genética , Biologia Computacional , Bactérias/efeitos dos fármacos , Bactérias/genética , Simulação por Computador , Resistência a Múltiplos Medicamentos/genética , Evolução Molecular , Humanos
2.
J Infect Dis ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716762

RESUMO

Toll-like receptor 5 (TLR5) signaling plays a key role in antibacterial defenses. We previously showed that respiratory administration of flagellin, a potent TLR5 agonist, in combination with amoxicillin improves the treatment of primary pneumonia or superinfection caused by amoxicillin-sensitive or -resistant Streptococcus pneumoniae. Here, the impact of adjunct flagellin therapy on antibiotic dose/regimen and the selection of antibiotic-resistant S. pneumoniae was investigated using superinfection with isogenic antibiotic-sensitive and -resistant bacteria and population dynamics analysis. Our findings demonstrate that flagellin allows for a 200-fold reduction in the antibiotic dose, achieving the same therapeutic effect observed with antibiotic alone. Adjunct treatment also reduced the selection of antibiotic-resistant bacteria in contrast to the antibiotic monotherapy. Finally, we developed a mathematical model that captured the population dynamics and estimated a 20-fold enhancement immune-modulatory factor on bacterial clearance. This work paves the way for the development of host-directed therapy and refinement of treatment by modeling.

3.
Theor Popul Biol ; 156: 77-92, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331222

RESUMO

Modern molecular technologies have revolutionized our understanding of bacterial epidemiology, but reported data across studies and different geographic endemic settings remain under-integrated in common theoretical frameworks. Pneumococcus serotype co-colonization, caused by the polymorphic bacteria Streptococcus pneumoniae, has been increasingly investigated and reported in recent years. While the global genomic diversity and serotype distribution of S. pneumoniae have been well-characterized, there is limited information on how co-colonization patterns vary globally, critical for understanding the evolution and transmission dynamics of the bacteria. Gathering a rich dataset of cross-sectional pneumococcal colonization studies in the literature, we quantified patterns of transmission intensity and co-colonization prevalence variation in children populations across 17 geographic locations. Linking these data to an SIS model with cocolonization under the assumption of quasi-neutrality among multiple interacting strains, our analysis reveals strong patterns of negative co-variation between transmission intensity (R0) and susceptibility to co-colonization (k). In line with expectations from the stress-gradient-hypothesis in ecology (SGH), pneumococcus serotypes appear to compete more in co-colonization in high-transmission settings and compete less in low-transmission settings, a trade-off which ultimately leads to a conserved ratio of single to co-colonization µ=1/(R0-1)k. From the mathematical model's behavior, such conservation suggests preservation of 'stability-diversity-complexity' regimes in coexistence of similar co-colonizing strains. We find no major differences in serotype compositions across studies, pointing to adaptation of the same set of serotypes across variable environments as an explanation for their differential interaction in different transmission settings. Our work highlights that the understanding of transmission patterns of Streptococcus pneumoniae from global scale epidemiological data can benefit from simple analytical approaches that account for quasi-neutrality among strains, co-colonization, as well as variable environmental adaptation.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Criança , Humanos , Streptococcus pneumoniae/genética , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/microbiologia , Estudos Transversais , Nasofaringe/microbiologia , Bactérias
4.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014279

RESUMO

Multi-drug combinations to treat bacterial populations are at the forefront of approaches for infection control and prevention of antibiotic resistance. Although the evolution of antibiotic resistance has been theoretically studied with mathematical population dynamics models, extensions to spatial dynamics remain rare in the literature, including in particular spatial evolution of multi-drug resistance. In this study, we propose a reaction-diffusion system that describes the multi-drug evolution of bacteria, based on a rescaling approach (Gjini and Wood, 2021). We show how the resistance to drugs in space, and the consequent adaptation of growth rate is governed by a Price equation with diffusion. The covariance terms in this equation integrate features of drug interactions and collateral resistances or sensitivities to the drugs. We study spatial versions of the model where the distribution of drugs is homogeneous across space, and where the drugs vary environmentally in a piecewise-constant, linear and nonlinear manner. Applying concepts from perturbation theory and reaction-diffusion equations, we propose an analytical characterization of average mutant fitness in the spatial system based on the principal eigenvalue of our linear problem. This enables an accurate translation from drug spatial gradients and mutant antibiotic susceptibility traits, to the relative advantage of each mutant across the environment. Such a mathematical understanding allows to predict the precise outcomes of selection over space, ultimately from the fundamental balance between growth and movement traits, and their diversity in a population.

5.
R Soc Open Sci ; 10(11): 231034, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38026034

RESUMO

Multispecies community composition and dynamics are key to health and disease across biological systems, a prominent example being microbial ecosystems. Explaining the forces that govern diversity and resilience in the microbial consortia making up our body's defences remains a challenge. In this, theoretical models are crucial, to bridge the gap between species dynamics and underlying mechanisms and to develop analytic insight. Here we propose a replicator equation framework to model multispecies dynamics where an explicit notion of invasion resistance of a system emerges and can be studied explicitly. For illustration, we derive the conceptual link between such replicator equation and N microbial species' growth and interaction traits, stemming from micro-scale environmental modification. Within this replicator framework, mean invasion fitness arises, evolves dynamically, and may undergo critical predictable shifts with global environmental changes. This mathematical approach clarifies the key role of this resident system trait for invader success, and highlights interaction principles among N species that optimize their collective resistance to invasion. We propose this model based on the replicator equation as a powerful new avenue to study, test and validate mechanisms of invasion resistance and colonization in multispecies microbial ecosystems and beyond.

6.
J Math Biol ; 87(3): 48, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640832

RESUMO

Understanding the interplay of different traits in a co-infection system with multiple strains has many applications in ecology and epidemiology. Because of high dimensionality and complex feedback between traits manifested in infection and co-infection, the study of such systems remains a challenge. In the case where strains are similar (quasi-neutrality assumption), we can model trait variation as perturbations in parameters, which simplifies analysis. Here, we apply singular perturbation theory to many strain parameters simultaneously and advance analytically to obtain their explicit collective dynamics. We consider and study such a quasi-neutral model of susceptible-infected-susceptible (SIS) dynamics among N strains, which vary in 5 fitness dimensions: transmissibility, clearance rate of single- and co-infection, transmission probability from mixed coinfection, and co-colonization vulnerability factors encompassing cooperation and competition. This quasi-neutral system is analyzed with a singular perturbation method through an appropriate slow-fast decomposition. The fast dynamics correspond to the embedded neutral system, while the slow dynamics are governed by an N-dimensional replicator equation, describing the time evolution of strain frequencies. The coefficients of this replicator system are pairwise invasion fitnesses between strains, which, in our model, are an explicit weighted sum of pairwise asymmetries along all trait dimensions. Remarkably these weights depend only on the parameters of the neutral system. Such model reduction highlights the centrality of the neutral system for dynamics at the edge of neutrality and exposes critical features for the maintenance of diversity.


Assuntos
Coinfecção , Humanos , Ecologia , Fenótipo , Fatores de Risco
7.
Nat Commun ; 13(1): 7548, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481558

RESUMO

When Trypanosoma brucei parasites, the causative agent of sleeping sickness, colonize the adipose tissue, they rewire gene expression. Whether this adaptation affects population behavior and disease treatment remained unknown. By using a mathematical model, we estimate that the population of adipose tissue forms (ATFs) proliferates slower than blood parasites. Analysis of the ATFs proteome, measurement of protein synthesis and proliferation rates confirm that the ATFs divide on average every 12 h, instead of 6 h in the blood. Importantly, the population of ATFs is heterogeneous with parasites doubling times ranging between 5 h and 35 h. Slow-proliferating parasites remain capable of reverting to the fast proliferation profile in blood conditions. Intravital imaging shows that ATFs are refractory to drug treatment. We propose that in adipose tissue, a subpopulation of T. brucei parasites acquire a slow growing behavior, which contributes to disease chronicity and treatment failure.


Assuntos
Tecido Adiposo
8.
J Theor Biol ; 538: 111041, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35114194

RESUMO

A general theory for competitive dynamics among many strains at the epidemiological level is required to understand polymorphisms in virulence, transmissibility, antibiotic resistance and other biological traits of infectious agents. Mathematical coinfection models have addressed specific systems, focusing on the criteria leading to stable coexistence or competitive exclusion, however, due to their complexity and nonlinearity, analytical solutions in coinfection models remain rare. Here we study a 2-strain Susceptible-Infected-Susceptible (SIS) compartmental model with co-infection/co-colonization, incorporating five strain fitness dimensions under the same framework: variation in transmissibility, duration of carriage, pairwise susceptibilities to coinfection, coinfection duration, and transmission priority effects from mixed coinfection. Taking advantage of a singular perturbation approach, under the assumption of strain similarity, we expose how strain dynamics on a slow timescale are explicitly governed by a replicator equation which encapsulates all traits and their interplay. This allows to predict explicitly not only the final epidemiological outcome of a given 2-player competition, but moreover, their entire frequency dynamics as a direct function of their relative variation and of strain-transcending global parameters. Based on mutual invasion fitnesses, we analyze and report rigorous results on transition phenomena in the 2-strain system, strongly mediated via endemic coinfection prevalence. We show that coinfection is not always a promoter of coexistence; instead, its effect to favour or prevent polymorphism is non-monotonic and depends on the type and level of phenotypic differentiation between strains. This framework offers a deeper analytical understanding of 2-strain competitive games in coinfection, with theoretical and practical applications in epidemiology, ecology and evolution.


Assuntos
Coinfecção , Coinfecção/epidemiologia , Suscetibilidade a Doenças , Humanos , Modelos Biológicos , Fenótipo , Virulência
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1916-1919, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891661

RESUMO

Sepsis is a life-threatening condition caused by a deregulated host response to infection. If not diagnosed at an early stage, septic patients can go into a septic shock, associated with aggravated patient outcomes. Research has been mostly focused on predicting sepsis onset using supervised models that require big labeled datasets to train. In this work we propose two fully unsupervised learning approaches to predict septic shock onset in the Intensive Care Unit (ICU). Our approach includes learning representations from patient multivariate timeseries using Recurrent Autoencoders. Then, we apply an anomaly detection framework, using clustering-based algorithms, on the representation space learned by the models. When evaluating the performance of the proposed approaches in the septic shock onset prediction task, the Variational Autoencoder (VAE) using Gaussian Mixture Models in the anomaly detection framework was competitive with a supervised LSTM network. Results led to an AUC of 0.82 and F1-score of 0.65 using the unsupervised approach in comparison with 0.80, 0.66 for the supervised model.Clinical relevance- This work proposes an unsupervised septic shock onset prediction framework which can improve current procedure for monitoring infection progression in the ICU.


Assuntos
Sepse , Choque Séptico , Cuidados Críticos , Humanos , Unidades de Terapia Intensiva , Sepse/diagnóstico , Choque Séptico/diagnóstico , Aprendizado de Máquina não Supervisionado
10.
Elife ; 102021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34289932

RESUMO

Bacterial adaptation to antibiotic combinations depends on the joint inhibitory effects of the two drugs (drug interaction [DI]) and how resistance to one drug impacts resistance to the other (collateral effects [CE]). Here we model these evolutionary dynamics on two-dimensional phenotype spaces that leverage scaling relations between the drug-response surfaces of drug-sensitive (ancestral) and drug-resistant (mutant) populations. We show that evolved resistance to the component drugs - and in turn, the adaptation of growth rate - is governed by a Price equation whose covariance terms encode geometric features of both the two-drug-response surface (DI) in ancestral cells and the correlations between resistance levels to those drugs (CE). Within this framework, mean evolutionary trajectories reduce to a type of weighted gradient dynamics, with the drug interaction dictating the shape of the underlying landscape and the collateral effects constraining the motion on those landscapes. We also demonstrate how constraints on available mutational pathways can be incorporated into the framework, adding a third key driver of evolution. Our results clarify the complex relationship between drug interactions and collateral effects in multidrug environments and illustrate how specific dosage combinations can shift the weighting of these two effects, leading to different and temporally explicit selective outcomes.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Interações Medicamentosas , Farmacorresistência Bacteriana/efeitos dos fármacos , Modelos Biológicos , Mutação
11.
Ecol Evol ; 11(13): 8456-8474, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34257910

RESUMO

The high number and diversity of microbial strains circulating in host populations have motivated extensive research on the mechanisms that maintain biodiversity. However, much of this work focuses on strain-specific and cross-immunity interactions. Another less explored mode of pairwise interaction is via altered susceptibilities to co-colonization in hosts already colonized by one strain. Diversity in such interaction coefficients enables strains to create dynamically their niches for growth and persistence, and "engineer" their common environment. How such a network of interactions with others mediates collective coexistence remains puzzling analytically and computationally difficult to simulate. Furthermore, the gradients modulating stability-complexity regimes in such multi-player endemic systems remain poorly understood. In a recent study (Madec & Gjini, Bulletin of Mathematical Biology, 82), we obtained an analytic representation for N-type coexistence in an SIS epidemiological model with co-colonization. We mapped multi-strain dynamics to a replicator equation using timescale separation. Here, we examine what drives coexistence regimes in such co-colonization system. We find the ratio of single to co-colonization, µ, critically determines the type of equilibrium and number of coexisting strains, and encodes a trade-off between overall transmission intensity R 0 and mean interaction coefficient in strain space, k. Preserving a given coexistence regime, under fixed trait variation, requires balancing between higher mean competition in favorable environments, and higher cooperation in harsher environments, and is consistent with the stress gradient hypothesis. Multi-strain coexistence tends to steady-state attractors for small µ, whereas as µ increases, dynamics tend to more complex attractors. Following strain frequencies, evolutionary dynamics in the system also display contrasting patterns with µ, interpolating between multi-stable and fluctuating selection for cooperation and mean invasion fitness, in the two extremes. This co-colonization framework could be applied more generally, to study invariant principles in collective coexistence, and to quantify how critical shifts in community dynamics get potentiated by mean-field and environmental gradients.

12.
Cell Host Microbe ; 29(3): 347-361.e12, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497603

RESUMO

Most mammals express a functional GGTA1 gene encoding the N-acetyllactosaminide α-1,3-galactosyltransferase enzyme, which synthesizes Gal-α1-3Gal-ß1-4GlcNAc (α-gal) and are thus tolerant to this self-expressed glycan. Old World primates including humans, however, carry loss-of-function mutations in GGTA1 and lack α-gal. Presumably, fixation of such mutations was propelled by natural selection, favoring the emergence of α-gal-specific immunity, conferring resistance to α-gal-expressing pathogens. Here, we show that loss of Ggta1 function in mice enhances resistance to bacterial sepsis, irrespectively of α-Gal-specific immunity. Rather, the absence of α-gal from IgG-associated glycans increases IgG effector function via a mechanism associated with enhanced IgG-Fc gamma receptor (FcγR) binding. The ensuing survival advantage against sepsis comes alongside a cost of accelerated reproductive senescence in Ggta1-deleted mice. Mathematical modeling of this trade-off suggests that high exposure to virulent pathogens exerts sufficient selective pressure to fix GGTA1 loss-of-function mutations, as likely occurred during the evolution of primates toward humans.


Assuntos
Evolução Biológica , Dissacarídeos , Sepse/microbiologia , Animais , Bactérias , Proteínas de Transporte , Proteínas de Ligação a DNA , Feminino , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Glicoproteínas , Hominidae , Humanos , Imunoglobulina G/imunologia , Masculino , Mamíferos/imunologia , Camundongos , Camundongos Knockout , Polissacarídeos , Primatas
13.
Evol Med Public Health ; 2020(1): 249-263, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376597

RESUMO

Antibiotics are the major tool for treating bacterial infections. Rising antibiotic resistance, however, calls for a better use of antibiotics. While classical recommendations favor long and aggressive treatments, more recent clinical trials advocate for moderate regimens. In this debate, two axes of 'aggression' have typically been conflated: treatment intensity (dose) and treatment duration. The third dimension of treatment timing along each individual's infection course has rarely been addressed. By using a generic mathematical model of bacterial infection controlled by immune response, we examine how the relative effectiveness of antibiotic treatment varies with its timing, duration and antibiotic kill rate. We show that short or long treatments may both be beneficial depending on treatment onset, the target criterion for success and on antibiotic efficacy. This results from the dynamic trade-off between immune response build-up and resistance risk in acute, self-limiting infections, and uncertainty relating symptoms to infection variables. We show that in our model early optimal treatments tend to be 'short and strong', while late optimal treatments tend to be 'mild and long'. This suggests a shift in the aggression axis depending on the timing of treatment. We find that any specific optimal treatment schedule may perform more poorly if evaluated by other criteria, or under different host-specific conditions. Our results suggest that major advances in antibiotic stewardship must come from a deeper empirical understanding of bacterial infection processes in individual hosts. To guide rational therapy, mathematical models need to be constrained by data, including a better quantification of personal disease trajectory in humans. Lay summary: Bacterial infections are becoming more difficult to treat worldwide because bacteria are becoming resistant to the antibiotics used. Addressing this problem requires a better understanding of how treatment along with other host factors impact antibiotic resistance. Until recently, most theoretical research has focused on the importance of antibiotic dosing on antibiotic resistance, however, duration and timing of treatment remain less explored. Here, we use a mathematical model of a generic bacterial infection to study three aspects of treatment: treatment dose/efficacy (defined by the antibiotic kill rate), duration, and timing, and their impact on several infection endpoints. We show that short and long treatment success strongly depends on when treatment begins (defined by the symptom threshold), the target criterion to optimize, and on antibiotic efficacy. We find that if administered early in an infection, "strong and short" therapy performs better, while if treatment begins at higher bacterial densities, a "mild and long" course of antibiotics is favored. In the model host immune defenses are key in preventing relapses, controlling antibiotic resistant bacteria and increasing the effectiveness of moderate intervention. In order to improve rational treatments of human infections, we call for a better quantification of individual disease trajectories in bacteria-immunity space.

14.
Front Microbiol ; 11: 572487, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072034

RESUMO

With increasing resolution of microbial diversity at the genomic level, experimental and modeling frameworks that translate such diversity into phenotypes are highly needed. This is particularly important when comparing drug-resistant with drug-sensitive pathogen strains, when anticipating epidemiological implications of microbial diversity, and when designing control measures. Classical approaches quantify differences between microbial strains using the exponential growth model, and typically report a selection coefficient for the relative fitness differential between two strains. The apparent simplicity of such approaches comes with the costs of limiting the range of biological scenarios that can be captured, and biases strain fitness estimates to polarized extremes of competitive exclusion. Here, we propose a mathematical and statistical framework based on the Lotka-Volterra model, that can capture frequency-dependent competition between microbial strains within-host and upon transmission. As a proof-of-concept, the model is applied to a previously-published dataset from in-vivo competitive mixture experiments with influenza strains in ferrets (McCaw et al., 2011). We show that for the same data, our model predicts a scenario of coexistence between strains, and supports a higher bottleneck size in the range of 35-145 virions transmitted from donor to recipient host. Thanks to its simplicity and generality, such framework could be applied to other ecological scenarios of microbial competition, enabling a more complex and nuanced view of possible outcomes between two strains, beyond competitive exclusion.

15.
Bull Math Biol ; 82(11): 142, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33119836

RESUMO

Multi-type infection processes are ubiquitous in ecology, epidemiology and social systems, but remain hard to analyze and to understand on a fundamental level. Here, we study a multi-strain susceptible-infected-susceptible model with coinfection. A host already colonized by one strain can become more or less vulnerable to co-colonization by a second strain, as a result of facilitating or competitive interactions between the two. Fitness differences between N strains are mediated through [Formula: see text] altered susceptibilities to secondary infection that depend on colonizer-cocolonizer identities ([Formula: see text]). By assuming strain similarity in such pairwise traits, we derive a model reduction for the endemic system using separation of timescales. This 'quasi-neutrality' in trait space sets a fast timescale where all strains interact neutrally, and a slow timescale where selective dynamics unfold. We find that these slow dynamics are governed by the replicator equation for N strains. Our framework allows to build the community dynamics bottom-up from only pairwise invasion fitnesses between members. We highlight that mean fitness of the multi-strain network, changes with their individual dynamics, acts equally upon each type, and is a key indicator of system resistance to invasion. By uncovering the link between N-strain epidemiological coexistence and the replicator equation, we show that the ecology of co-colonization relates to Fisher's fundamental theorem and to Lotka-Volterra systems. Besides efficient computation and complexity reduction for any system size, these results open new perspectives into high-dimensional community ecology, detection of species interactions, and evolution of biodiversity.


Assuntos
Ecologia , Ecossistema , Epidemiologia , Modelos Biológicos , Biodiversidade , Ecologia/métodos , Conceitos Matemáticos , Fenótipo
16.
Cell Rep ; 32(3): 107910, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32697991

RESUMO

Cell competition in the thymus is a homeostatic process that drives turnover. If the process is impaired, thymopoiesis can be autonomously maintained for several weeks, but this causes leukemia. We aimed to understand the effect of cell competition on thymopoiesis, identify the cells involved, and determine how the process is regulated. Using thymus transplantation experiments, we found that cell competition occurs within the double-negative 2 (DN2) and 3 early (DN3e) thymocytes and inhibits thymus autonomy. Furthermore, the expansion of DN2b is regulated by a negative feedback loop that is imposed by double-positive thymocytes and determines the kinetics of thymopoiesis. This feedback loop affects the cell cycle duration of DN2b, in a response controlled by interleukin 7 availability. Altogether, we show that thymocytes do not merely follow a pre-determined path if provided with the correct signals. Instead, thymopoiesis dynamically integrates cell-autonomous and non-cell-autonomous aspects that fine-tune normal thymus function.


Assuntos
Competição entre as Células , Timócitos/citologia , Timo/citologia , Animais , Contagem de Células , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Interleucina-7/metabolismo , Cinética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Timo/transplante
17.
Proc Natl Acad Sci U S A ; 116(12): 5681-5686, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833408

RESUMO

Malaria, the disease caused by Plasmodium spp. infection, remains a major global cause of morbidity and mortality. Host protection from malaria relies on immune-driven resistance mechanisms that kill Plasmodium However, these mechanisms are not sufficient per se to avoid the development of severe forms of disease. This is accomplished instead via the establishment of disease tolerance to malaria, a defense strategy that does not target Plasmodium directly. Here we demonstrate that the establishment of disease tolerance to malaria relies on a tissue damage-control mechanism that operates specifically in renal proximal tubule epithelial cells (RPTEC). This protective response relies on the induction of heme oxygenase-1 (HMOX1; HO-1) and ferritin H chain (FTH) via a mechanism that involves the transcription-factor nuclear-factor E2-related factor-2 (NRF2). As it accumulates in plasma and urine during the blood stage of Plasmodium infection, labile heme is detoxified in RPTEC by HO-1 and FTH, preventing the development of acute kidney injury, a clinical hallmark of severe malaria.


Assuntos
Heme/metabolismo , Rim/metabolismo , Malária/fisiopatologia , Animais , Apoferritinas/metabolismo , Linhagem Celular , Progressão da Doença , Células Epiteliais/metabolismo , Ferritinas/metabolismo , Ferritinas/fisiologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/fisiologia , Humanos , Tolerância Imunológica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Oxirredutases , Plasmodium berghei/metabolismo , Plasmodium berghei/parasitologia , Regulação para Cima
18.
Bull Math Biol ; 79(9): 2068-2087, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28741105

RESUMO

Humans are often colonized by polymorphic bacteria such as Streptococcus pneumoniae, Bordetella pertussis, Staphylococcus Aureus, and Haemophilus influenzae. Two co-colonizing pathogen clones may interact with each other upon host entry and during within-host dynamics, ranging from competition to facilitation. Here we examine the significance of these exploitation strategies for bacterial spread and persistence in host populations. We model SIS epidemiological dynamics to capture the global behavior of such multi-strain systems, focusing on different parameters of single and dual colonization. We analyze the impact of heterogeneity in clearance and transmission rates of single and dual colonization and find the criteria under which these asymmetries enhance endemic persistence. We obtain a backward bifurcation near [Formula: see text] if the reproductive value of the parasite in dually infected hosts is sufficiently higher than that in singly infected ones. In such cases, the parasite is able to persist even in sub-threshold conditions, and reducing the basic reproduction number below 1 would be insufficient for elimination. The fitness superiority in co-colonized hosts can be attained by lowering net parasite clearance rate ([Formula: see text]), by increasing transmission rate ([Formula: see text]), or both, and coupling between these traits critically constrains opportunities of pathogen survival in the [Formula: see text] regime. Finally, using an adaptive dynamics approach, we verify that despite their importance for sub-threshold endemicity, traits expressed exclusively in coinfection should generally evolve independently of single infection traits. In particular, for [Formula: see text] a saturating parabolic or hyperbolic function of [Formula: see text], co-colonization traits evolve to an intermediate optimum (evolutionarily stable strategy, ESS), determined only by host lifespan and the trade-off parameters linking [Formula: see text] and [Formula: see text]. Our study invites more empirical attention to the dynamics and evolution of parasite life-history traits expressed exclusively in coinfection.


Assuntos
Bactérias/patogenicidade , Infecções Bacterianas/transmissão , Coinfecção/transmissão , Interações Hospedeiro-Patógeno , Modelos Biológicos , Animais , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Número Básico de Reprodução , Evolução Biológica , Coinfecção/epidemiologia , Coinfecção/microbiologia , Humanos , Conceitos Matemáticos
19.
Sci Rep ; 7(1): 3049, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28607461

RESUMO

Although mean efficacy of multivalent pneumococcus vaccines has been intensively studied, variance in vaccine efficacy (VE) has been overlooked. Different net individual protection across settings can be driven by environmental conditions, local serotype and clonal composition, as well as by socio-demographic and genetic host factors. Understanding efficacy variation has implications for population-level effectiveness and other eco-evolutionary feedbacks. Here I show that realized VE can vary across epidemiological settings, by applying a multi-site-one-model approach to data post-vaccination. I analyse serotype prevalence dynamics following PCV7, in asymptomatic carriage in children attending day care in Portugal, Norway, France, Greece, Hungary and Hong-Kong. Model fitting to each dataset provides site-specific estimates for vaccine efficacy against acquisition, and pneumococcal transmission parameters. According to this model, variable serotype replacement across sites can be explained through variable PCV7 efficacy, ranging from 40% in Norway to 10% in Hong-Kong. While the details of how this effect is achieved remain to be determined, here I report three factors negatively associated with the VE readout, including initial prevalence of serotype 19F, daily mean temperature, and the Gini index. The study warrants more attention on local modulators of vaccine performance and calls for predictive frameworks within and across populations.


Assuntos
Creches/estatística & dados numéricos , Vacina Pneumocócica Conjugada Heptavalente/uso terapêutico , Infecções Pneumocócicas/prevenção & controle , Streptococcus pneumoniae/efeitos dos fármacos , Algoritmos , Criança , França/epidemiologia , Grécia/epidemiologia , Vacina Pneumocócica Conjugada Heptavalente/imunologia , Hong Kong/epidemiologia , Humanos , Hungria/epidemiologia , Modelos Teóricos , Noruega/epidemiologia , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/microbiologia , Portugal/epidemiologia , Prevalência , Sorogrupo , Streptococcus pneumoniae/imunologia , Resultado do Tratamento
20.
PLoS Comput Biol ; 12(4): e1004857, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27078624

RESUMO

Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. We use mathematical modelling of within-host infection dynamics to study the interplay between pathogen-dependent host immune responses and antibiotic treatment. We compare classical (fixed dose and duration) and adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection outcomes such as time to clearance, immunopathology, host immunization, and selection of resistant bacteria. Our analysis and simulations uncover effective treatment strategies that promote synergy between the host immune system and the antimicrobial drug in clearing infection. Both in classical and adaptive treatment, we quantify how treatment timing and the strength of the immune response determine the success of moderate therapies. We explain key parameters and dimensions, where an adaptive regime differs from classical treatment, bringing new insight into the ongoing debate of resistance management. Emphasizing the sensitivity of treatment outcomes to the balance between external antibiotic intervention and endogenous natural defenses, our study calls for more empirical attention to host immunity processes.


Assuntos
Anti-Infecciosos/uso terapêutico , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Infecções/tratamento farmacológico , Infecções/imunologia , Anti-Infecciosos/administração & dosagem , Biologia Computacional , Simulação por Computador , Resistência Microbiana a Medicamentos , Humanos , Modelos Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA