Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 22(11)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29165403

RESUMO

In the present work an in depth deep electronic study of multicenter XBs (FX)n/NH3 (X = Cl, Br and n = 1-5) is conducted. The ways in which X∙∙∙X lateral contacts affect the electrostatic or covalent nature of the X∙∙∙N interactions are explored at the CCSD(T)/aug-cc-pVTZ level and in the framework of the quantum theory of atoms in molecules (QTAIM). Calculations show that relatively strong XBs have been found with interaction energies lying between -41 and -90 kJ mol-1 for chlorine complexes, and between -56 and -113 kJ mol-1 for bromine complexes. QTAIM parameters reveal that in these complexes: (i) local (kinetics and potential) energy densities measure the ability that the system has to concentrate electron charge density at the intermolecular X∙∙∙N region; (ii) the delocalization indices [δ(A,B)] and the exchange contribution [VEX(X,N)] of the interacting quantum atoms (IQA) scheme, could constitute a quantitative measure of the covalence of these molecular interactions; (iii) both classical electrostatic and quantum exchange show high values, indicating that strong ionic and covalent contributions are not mutually exclusive.


Assuntos
Halogênios/química , Algoritmos , Cinética , Modelos Químicos , Modelos Moleculares , Conformação Molecular
2.
J Mol Model ; 23(9): 263, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28808800

RESUMO

The nature of non-covalent interactions in self-assembling systems is a topic that has aroused great attention in literature. In this field, the 1,3,5-triazinane-2,4,6-trione or cyanuric acid (CA) is one of the most widely used molecules to formulate self-assembled materials or monolayers. In the present work, a variety of molecular aggregates of CA are examined using three different DFT functionals (B3LYP, B3LYP-D3, and ω-B97XD) in the framework of the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis. Herein, a step by step aggregation path is proposed and the origin of cooperative effects is also examined. It is shown that a greater cooperativity is not always associated with a greater binding energy, and the greatest cooperative effect occurs with highly directional hydrogen bonds. The intramolecular charge transfers play a key role in this effect. Graphical abstract The noncovalent interactions in cyanuric acid supramolecules were analyzed. The calculations provide insights into the self-assembly steps from dimers to rosette-like motif. The complexes with collinear hydrogen bonds show positive cooperativity, while in the arrangement with double hydrogen bonds the cooperative effect is essentially zero.

3.
J Mol Model ; 22(9): 202, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27491851

RESUMO

The melamine (M)/cyanuric acid (CA) supramolecular system is perhaps one of the most exploited in the field of self-assembly because of the high complementarity of the components. However, it is necessary to investigate further the factors involved in the assembly process. In this study, we analyzed a set of 13 M n /CA m clusters (with n , m = 1, 2, 3), taken from crystallographic data, to characterize the nature of the hydrogen bonds involved in the self-assembly of these components as well as to provide greater understanding of the phenomenon. The calculations were performed at the B3LYP/6-311++G(d,p) and ω-B97XD (single point) levels of theory, and the interactions were analyzed within the framework of the quantum theory of atoms in molecules and by means of molecular electrostatic potential maps. Our results show that the stablest structure is the rosette-type motif and the aggregation mechanism is governed by a combination of cooperative and anticooperative effects. Our topological results explain the polymorphism in the self-assembly of coadsorbed monolayers of M and CA. Graphical abstract The aggregation steps of the melamine-cyanuric co-crystal is driven by a hydrogen-bonded network which is governed by a complex combination of cooperative and anticooperative effects.

4.
Phys Chem Chem Phys ; 18(10): 7300-9, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26900007

RESUMO

The nature of F-BrX-R interactions (with X = F, Cl, Br, I and R = -H, -F) has been investigated through theoretical calculation of molecular potential electrostatic (MEP), molecular polarizability, atoms in molecules (AIM) analysis and energetic decomposition analysis (EDA). A detailed analysis of the MEPs reveals that considering only the static electrostatic interactions is not sufficient to explain the nature of these interactions. The molecular polarizabilities of X-R molecules suggest that the deformation capacity of the electronic cloud of the lone pairs of the X atom plays an important role in the stability of these complexes. The topological analysis of the L(r) = -»∇(2)ρ(r) function and the detailed analysis of the atomic quadrupole moments reveal that the BrX interactions are electrostatic in nature. The electron acceptor Br atom causes a polarization of the electronic cloud (electronic induction) on the valence shell of the X atom. Finally, the electrostatic forces and charge transfer play an important role not only in the stabilization of the complex, but also in the determination of the molecular geometry of equilibrium. The dispersive and polarization forces do not influence the equilibrium molecular geometry.

5.
J Mol Model ; 19(5): 2035-41, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23076553

RESUMO

In this work we investigate the nature of the Cl···N interactions in complexes formed between substituted ammonium [NHn(X3-n) (with n = 0, 1, 2, 3 and X = -CH3, -F] as Lewis bases and F-Cl molecule as Lewis acid. They have been chosen as a study case due to the wide range of variation of their binding energies, BEs. Møller-Plesset [MP2/6-311++G(2d,2p)] calculations show that the BEs for this set of complexes lie in the range from 1.27 kcal/mol (in F-Cl···NF3) to 27.62 kcal/mol [in F-Cl···N(CH3)3]. The intermolecular distribution of the electronic charge density and their L(r) = -»∇(2)ρ(r) function have been investigated within the framework of the atoms in molecules (AIM) theory. The intermolecular interaction energy decomposition has also been analyzed using the reduced variational space (RVS) method. The topological analysis of the L(r) function reveals that the local topological properties measured at the (3,+1) critical point [in L(r) topology] are good descriptors of the strength of the halogen bonding interactions. The results obtained from energy decomposition analysis indicate that electrostatic interactions play a key role in these halogen bonding interactions. These results allow us to establish that, when the halogen atom is bonded to a group with high electron-withdrawing capacity, the electrostatic interaction between the electron cloud of the Lewis base and the halogen atom unprotected nucleus of the Lewis acid produces the formation and determines the geometry of the halogen bonded complexes. In addition, a good linear relationship has been established between: the natural logarithm of the BEs and the electrostatic interaction energy between electron charge distribution of N atom and nucleus of Cl atom, denoted as V e-n(N,Cl) within the AIM theory.

6.
J Phys Chem A ; 114(1): 552-62, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19919022

RESUMO

Density functional theory (DFT) and atoms in molecules theory (AIM) were used to study the characteristic of the noncovalent interactions in complexes formed between Lewis bases (NH(3), H(2)O, and H(2)S) and Lewis acids (ClF, BrF, IF, BrCl, ICl, and IBr). In order to compare halogen and hydrogen bonds interactions, this study included hydrogen complexes formed by some Lewis bases and HF, HCl, and HBr Lewis acids. Ab initio, wave functions were generated at B3LYP/6-311++G(d,p) level with optimized structures at the same level. Criteria based on a topological analysis of the electron density were used in order to characterize the nature of halogen interactions in Lewis complexes. The main purpose of the present work is to provide an answer to the following questions: (a) why can electronegative atoms such as halogens act as bridges between two other electronegative atoms? Can a study based on the electron charge density answer this question? Considering this, we had performed a profound study of halogen complexes in the framework of the AIM theory. A good correlation between the density at the intermolecular bond critical point and the energy interaction was found. We had also explored the concentration and depletion of the charge density, displayed by the Laplacian topology, in the interaction zone and in the X-Y halogen donor bond. From the atomic properties, it was generally observed that the two halogen atoms gain electron population in response to its own intrinsic nature. Because of this fact, both atoms are energetically stabilized.

7.
J Phys Chem A ; 109(1): 181-90, 2005 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16839104

RESUMO

In this work, we present a topological study of the Laplacian of the electronic density using a 6-311++G basis set, at Hartree-Fock (HF) and second-order Møller-Plesset (MP2) (full-electron and frozen-core) levels of theory, for the carbocations 2-C-n-butonium generated upon the insertion of a proton into the secondary C-C bond during the protonation of n-butane. The charge concentration, CC, critical points of the Laplacian distribution at each valence shell, VS, of carbon atoms, and the charge concentration closer to hydrogen atoms are studied. Also, the bonding critical points of the electronic density are analyzed. We analyze some effects that Coulomb correlation has on topological features of the electronic distribution. It is shown that they are mainly reflected in a decreasing of the charge concentrations at the VS and in a contraction of the VS to the nuclei. They are more pronounced over C-C bonds than in C-H bonds. The sensitivity of some parameters derived from this topological analysis to the correlation effect of core electrons and subtle effects related to hyperconjugative interactions are shown. Some consequences of different schemes (double and triple split-valence basis set with diffuse and polarization functions) in the definition of subtle VS charge concentrations at 3c-2e bond paths are presented. It is also demonstrated here how the facts that allow us to understand the MP2 stability order found in the carbocationic species 2-C-n-butonium > 1-C-n-butonium > 2-H-n-butonium > 1-H-n-butonium are similarly depicted at correlated and uncorrelated levels of calculation.

8.
J Consult Clin Psychol ; 68(6): 1027-32, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11142536

RESUMO

The authors examined the relations among therapeutic alliance, outcome, and early-in-treatment symptomatic improvement in a group of 86 patients with generalized anxiety disorders, chronic depression, or avoidant or obsessive-compulsive personality disorder who received supportive-expressive dynamic psychotherapy. Although alliance at Sessions 5 and 10, but not at Session 2, was associated with prior change in depression, alliance at all sessions significantly predicted subsequent change in depression when prior change in depression was partialed out. The results are discussed in terms of the causal role of the alliance in therapeutic outcome.


Assuntos
Transtornos de Ansiedade/terapia , Transtorno da Personalidade Compulsiva/terapia , Transtorno Depressivo/terapia , Transtornos da Personalidade/terapia , Relações Profissional-Paciente , Terapia Psicanalítica , Adulto , Idoso , Transtornos de Ansiedade/psicologia , Transtorno da Personalidade Compulsiva/psicologia , Transtorno Depressivo/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos da Personalidade/psicologia , Resultado do Tratamento
9.
J Org Chem ; 62(13): 4406-4411, 1997 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-11671767

RESUMO

2-Bromoadamantane (2-BrAd) reacted in liquid ammonia under irradiation with diphenylphosphide (Ph(2)P(-)) ions whereas 2-chloroadamantane (2-ClAd) did not under the same experimental conditions. However, 2-ClAd yielded 2-(trimethylstannyl)adamantane in its photostimulated reaction with trimethylstannyl (Me(3)Sn(-)) ions. The compound 1-ClAd yielded the substitution product in a photostimulated slow reaction when the nucleophile is Ph(2)P(-) ion; the reaction occurs faster with the nucleophile Me(3)Sn(-) ion. All these reactions can be explained by the S(RN)1 mechanism as they did not occur in the dark and were inhibited by p-dinitrobenzene when photostimulated. In competition experiments, 1-haloadamantane showed more reactivity than 2-haloadamantane. Either with Ph(2)P(-) or Me(3)Sn(-) ions, 1-BrAd is 1.4 times more reactive than 2-BrAd while 1-ClAd is 12 times more reactive than 2-ClAd with Me(3)Sn(-) ions. In the photostimulated reaction of 1,2-dichloroadamantane (7) with Ph(2)P(-) the monosubstitution products 1-adamantyldiphenylphosphine (64%) and 2-adamantyldiphenylphosphine (15%) were formed, isolated as the oxides. From these results, it appears that when 7 receives an electron, the 1-position fragments ca. four times faster than the 2-position. The disubstitution product was not formed with Ph(2)P(-) ions, but when 7 reacted with a nucleophile having less steric bulk such as a Me(3)Sn(-) ion, the 2-chloro-1-(trimethylstannyl)adamantane and the disubstitution product 1,2-bis(trimethylstannyl)adamantane were formed. The formation of these products is explained in terms of the different rates of the electron transfer reactions of the radical anion intermediates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA