Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(26): 31899-31916, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37345686

RESUMO

Electrically conductive polymer nanocomposites have been the subject of intense research due to their promising potential as piezoresistive biomedical sensors, leveraging their flexibility and biocompatibility. Although intrinsically conductive polymers such as polypyrrole (PPy) and polyaniline have emerged as lucrative candidates, they are extremely limited in their processability by conventional solution-based approaches. In this work, ultrathin nanostructured coatings of doped PPy are realized on polyurethane films of different architectures via oxidative chemical vapor deposition to develop stretchable and flexible resistance-based strain sensors. Holding the substrates perpendicular to the reactant flows facilitates diffusive transport and ensures excellent conformality of the interfacial integrated PPy coatings throughout the 3D porous electrospun fiber mats in a single step. This allows the mechanically robust (stretchability > 400%, with fatigue resistance up to 1000 cycles) nanocomposites to elicit a reversible change of electrical resistance when subjected to consecutive cycles of stretching and releasing. The repeatable performance of the strain sensor is linear due to dimensional changes of the conductive network in the low-strain regime (ε ≤ 50%), while the evolution of nano-cracks leads to an exponential increase, which is observed in the high-strain regime, recording a gauge factor as high as 46 at 202% elongational strain. The stretchable conductive polymer nanocomposites also show biocompatibility toward human dermal fibroblasts, thus providing a promising path for use as piezoresistive strain sensors and finding applications in biomedical applications such as wearable, skin-mountable flexible electronics.

2.
Adv Drug Deliv Rev ; 184: 114183, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278523

RESUMO

Pharmaceutical compounds are the main pillar in the treatment of various illnesses. To administer these drugs in the therapeutic setting, multiple routes of administration have been defined, including ingestion, inhalation, and injection. After administration, drugs need to find their way to the intended target for high effectiveness, and this penetration is greatly dependent on obstacles the drugs encounter along their path. Key hurdles include the physical barriers that are present within the body and knowledge of those is indispensable for progress in the development of drugs with increased therapeutic efficacy. In this review, we examine several important physical barriers, such as the blood-brain barrier, the gut-mucosal barrier, and the extracellular matrix barrier, and evaluate their influence on drug transport and efficacy. We explore various in vitro model systems that aid in understanding how parameters within the barrier model affect drug transfer and therapeutic effect. We conclude that physical barriers in the body restrict the quantity of drugs that can pass through, mainly as a consequence of the barrier architecture. In addition, the specific physical properties of the tissue can trigger intracellular changes, altering cell behavior in response to drugs. Though the barriers negatively influence drug distribution, physical stimulation of the surrounding environment may also be exploited as a mechanism to control drug release. This drug delivery approach is explored in this review as a potential alternative to the conventional ways of delivering therapeutics.


Assuntos
Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Transporte Biológico , Matriz Extracelular , Humanos , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA