Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Epigenetics Chromatin ; 17(1): 3, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336688

RESUMO

BACKGROUND: Bivalent chromatin is an exemplar of epigenetic plasticity. This co-occurrence of active-associated H3K4me3 and inactive-associated H3K27me3 histone modifications on opposite tails of the same nucleosome occurs predominantly at promoters that are poised for future transcriptional upregulation or terminal silencing. We know little of the dynamics, resolution, and regulation of this chromatin state outside of embryonic stem cells where it was first described. This is partly due to the technical challenges distinguishing bone-fide bivalent chromatin, where both marks are on the same nucleosome, from allelic or sample heterogeneity where there is a mix of H3K4me3-only and H3K27me3-only mononucleosomes. RESULTS: Here, we present a robust and sensitive method to accurately map bivalent chromatin genome-wide, along with controls, from as little as 2 million cells. We optimized and refined the sequential ChIP protocol which uses two sequential overnight immunoprecipitation reactions to robustly purify nucleosomes that are truly bivalent and contain both H3K4me3 and H3K27me3 modifications. Our method generates high quality genome-wide maps with strong peak enrichment and low background, which can be analyzed using standard bioinformatic packages. Using this method, we detect 8,789 bivalent regions in mouse embryonic stem cells corresponding to 3,918 predominantly CpG rich and developmentally regulated gene promoters. Furthermore, profiling Dppa2/4 knockout mouse embryonic stem cells, which lose both H3K4me3 and H3K27me3 at approximately 10% of bivalent promoters, demonstrated the ability of our method to capture bivalent chromatin dynamics. CONCLUSIONS: Our optimized sequential reChIP method enables high-resolution genome-wide assessment of bivalent chromatin together with all required controls in as little as 2 million cells. We share a detailed protocol and guidelines that will enable bivalent chromatin landscapes to be generated in a range of cellular contexts, greatly enhancing our understanding of bivalent chromatin and epigenetic plasticity beyond embryonic stem cells.


Assuntos
Cromatina , Histonas , Animais , Camundongos , Cromatina/genética , Histonas/genética , Nucleossomos , Genoma , Imunoprecipitação da Cromatina , Fatores de Transcrição/genética
2.
Biochem Soc Trans ; 52(1): 217-229, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38385532

RESUMO

Bivalent chromatin is defined by the co-occurrence of otherwise opposing H3K4me3 and H3K27me3 modifications and is typically located at unmethylated promoters of lowly transcribed genes. In embryonic stem cells, bivalent chromatin has been proposed to poise developmental genes for future activation, silencing or stable repression upon lineage commitment. Normally, bivalent chromatin is kept in tight balance in cells, in part through the activity of the MLL/COMPASS-like and Polycomb repressive complexes that deposit the H3K4me3 and H3K27me3 modifications, respectively, but also emerging novel regulators including DPPA2/4, QSER1, BEND3, TET1 and METTL14. In cancers, both the deregulation of existing domains and the creation of de novo bivalent states is associated with either the activation or silencing of transcriptional programmes. This may facilitate diverse aspects of cancer pathology including epithelial-to-mesenchymal plasticity, chemoresistance and immune evasion. Here, we review current methods for detecting bivalent chromatin and discuss the factors involved in the formation and fine-tuning of bivalent domains. Finally, we examine how the deregulation of chromatin bivalency in the context of cancer could facilitate and/or reflect cancer cell adaptation. We propose a model in which bivalent chromatin represents a dynamic balance between otherwise opposing states, where the underlying DNA sequence is primed for the future activation or repression. Shifting this balance in any direction disrupts the tight equilibrium and tips cells into an altered epigenetic and phenotypic space, facilitating both developmental and cancer processes.


Assuntos
Cromatina , Neoplasias , Humanos , Histonas/metabolismo , Células-Tronco Embrionárias , Neoplasias/genética , Sequência de Bases , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas
3.
Mol Cell ; 83(9): 1393-1411.e7, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37030288

RESUMO

Polycomb repressive complex 2 (PRC2) mediates H3K27me3 deposition, which is thought to recruit canonical PRC1 (cPRC1) via chromodomain-containing CBX proteins to promote stable repression of developmental genes. PRC2 forms two major subcomplexes, PRC2.1 and PRC2.2, but their specific roles remain unclear. Through genetic knockout (KO) and replacement of PRC2 subcomplex-specific subunits in naïve and primed pluripotent cells, we uncover distinct roles for PRC2.1 and PRC2.2 in mediating the recruitment of different forms of cPRC1. PRC2.1 catalyzes the majority of H3K27me3 at Polycomb target genes and is sufficient to promote recruitment of CBX2/4-cPRC1 but not CBX7-cPRC1. Conversely, while PRC2.2 is poor at catalyzing H3K27me3, we find that its accessory protein JARID2 is essential for recruitment of CBX7-cPRC1 and the consequent 3D chromatin interactions at Polycomb target genes. We therefore define distinct contributions of PRC2.1- and PRC2.2-specific accessory proteins to Polycomb-mediated repression and uncover a new mechanism for cPRC1 recruitment.


Assuntos
Histonas , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Histonas/genética , Histonas/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Cromatina/genética
4.
Curr Opin Struct Biol ; 67: 135-144, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33232890

RESUMO

The polycomb repressive complex 2 (PRC2) is a conserved multiprotein, repressive chromatin complex essential for development and maintenance of eukaryotic cellular identity. PRC2 comprises a trimeric core of SUZ12, EED and EZH1/2, which together with RBBP4/7 is sufficient to catalyse mono-methylation, di-methylation and tri-methylation of histone H3 at lysine 27 (H3K27me1/2/3). These histone methyltransferase activities of PRC2 are deregulated in several human cancers and certain developmental disorders, such as Weaver Syndrome. Core PRC2 associates with several accessory proteins, which organise to define two main subassemblies, PRC2.1 and PRC2.2. Here we review new biochemical and structural studies that are providing critical insights into how core and accessory PRC2 subunits coordinate the faithful deposition of H3K27 methylations genome-wide.


Assuntos
Cromatina , Complexo Repressor Polycomb 2 , Histonas/metabolismo , Humanos , Metilação , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Processamento de Proteína Pós-Traducional
5.
Mol Cell ; 76(3): 437-452.e6, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31521505

RESUMO

Polycomb repressive complex 2 (PRC2) is composed of EED, SUZ12, and EZH1/2 and mediates mono-, di-, and trimethylation of histone H3 at lysine 27. At least two independent subcomplexes exist, defined by their specific accessory proteins: PRC2.1 (PCL1-3, EPOP, and PALI1/2) and PRC2.2 (AEBP2 and JARID2). We show that PRC2.1 and PRC2.2 share the majority of target genes in mouse embryonic stem cells. The loss of PCL1-3 is sufficient to evict PRC2.1 from Polycomb target genes but only leads to a partial reduction of PRC2.2 and H3K27me3. Conversely, disruption of PRC2.2 function through the loss of either JARID2 or RING1A/B is insufficient to completely disrupt targeting of SUZ12 by PCLs. Instead, the combined loss of both PRC2.1 and PRC2.2 is required, leading to the global mislocalization of SUZ12. This supports a model in which the specific accessory proteins within PRC2.1 and PRC2.2 cooperate to direct H3K27me3 via both synergistic and independent mechanisms.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/genética , Humanos , Metilação , Camundongos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/genética , Ligação Proteica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Mol Cell ; 76(3): 371-381.e4, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31495565

RESUMO

Break-induced replication (BIR) is a pathway of homology-directed repair that repairs one-ended DNA breaks, such as those formed at broken replication forks or uncapped telomeres. In contrast to conventional S phase DNA synthesis, BIR proceeds by a migrating D-loop and results in conservative synthesis of the nascent strands. DNA polymerase delta (Pol δ) initiates BIR; however, it is not known whether synthesis of the invading strand switches to a different polymerase or how the complementary strand is synthesized. By using alleles of the replicative DNA polymerases that are permissive for ribonucleotide incorporation, thus generating a signature of their action in the genome that can be identified by hydrolytic end sequencing, we show that Pol δ replicates both the invading and the complementary strand during BIR. In support of this conclusion, we show that depletion of Pol δ from cells reduces BIR, whereas depletion of Pol ε has no effect.


Assuntos
Quebras de DNA , DNA Polimerase III/metabolismo , Replicação do DNA , DNA Fúngico/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , DNA Polimerase III/genética , DNA Fúngico/genética , Células HEK293 , Células HeLa , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Mol Cell ; 70(3): 408-421.e8, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29628311

RESUMO

The polycomb repressive complex 2 (PRC2) consists of core subunits SUZ12, EED, RBBP4/7, and EZH1/2 and is responsible for mono-, di-, and tri-methylation of lysine 27 on histone H3. Whereas two distinct forms exist, PRC2.1 (containing one polycomb-like protein) and PRC2.2 (containing AEBP2 and JARID2), little is known about their differential functions. Here, we report the discovery of a family of vertebrate-specific PRC2.1 proteins, "PRC2 associated LCOR isoform 1" (PALI1) and PALI2, encoded by the LCOR and LCORL gene loci, respectively. PALI1 promotes PRC2 methyltransferase activity in vitro and in vivo and is essential for mouse development. Pali1 and Aebp2 define mutually exclusive, antagonistic PRC2 subtypes that exhibit divergent H3K27-tri-methylation activities. The balance of these PRC2.1/PRC2.2 activities is required for the appropriate regulation of polycomb target genes during differentiation. PALI1/2 potentially link polycombs with transcriptional co-repressors in the regulation of cellular identity during development and in cancer.


Assuntos
Complexo Repressor Polycomb 2/genética , Proteínas Repressoras/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Diferenciação Celular/genética , Linhagem Celular , Células HEK293 , Histonas/genética , Humanos , Metilação , Metiltransferases/genética , Camundongos , Neoplasias/genética , Alinhamento de Sequência
8.
Mol Cell ; 70(2): 371-379.e5, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29606589

RESUMO

The Polycomb repressor complex 2 (PRC2) is composed of the core subunits Ezh1/2, Suz12, and Eed, and it mediates all di- and tri-methylation of histone H3 at lysine 27 in higher eukaryotes. However, little is known about how the catalytic activity of PRC2 is regulated to demarcate H3K27me2 and H3K27me3 domains across the genome. To address this, we mapped the endogenous interactomes of Ezh2 and Suz12 in embryonic stem cells (ESCs), and we combined this with a functional screen for H3K27 methylation marks. We found that Nsd1-mediated H3K36me2 co-locates with H3K27me2, and its loss leads to genome-wide expansion of H3K27me3. These increases in H3K27me3 occurred at PRC2/PRC1 target genes and as de novo accumulation within what were previously broad H3K27me2 domains. Our data support a model in which Nsd1 is a key modulator of PRC2 function required for regulating the demarcation of genome-wide H3K27me2 and H3K27me3 domains in ESCs.


Assuntos
Proteínas de Transporte/metabolismo , Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/enzimologia , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Animais , Proteínas de Transporte/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Histona-Lisina N-Metiltransferase , Humanos , Metilação , Camundongos , Proteínas Nucleares/genética , Complexo Repressor Polycomb 2/genética , Processamento de Proteína Pós-Traducional
9.
Cell Rep ; 17(12): 3359-3368, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28009302

RESUMO

DNA double-strand breaks (DSBs) are cytotoxic lesions that must be accurately repaired to maintain genome stability. Replication protein A (RPA) plays an important role in homology-dependent repair of DSBs by protecting the single-stranded DNA (ssDNA) intermediates formed by end resection and by facilitating Rad51 loading. We found that hypomorphic mutants of RFA1 that support intra-chromosomal homologous recombination are profoundly defective for repair processes involving long tracts of DNA synthesis, in particular break-induced replication (BIR). The BIR defects of the rfa1 mutants could be partially suppressed by eliminating the Sgs1-Dna2 resection pathway, suggesting that Dna2 nuclease attacks the ssDNA formed during end resection when not fully protected by RPA. Overexpression of Rad51 was also found to suppress the rfa1 BIR defects. We suggest that Rad51 binding to the ssDNA formed by excessive end resection and during D-loop migration can partially compensate for dysfunctional RPA.


Assuntos
Replicação do DNA/genética , Recombinação Homóloga/genética , Rad51 Recombinase/genética , Proteína de Replicação A/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , DNA Helicases/genética , Reparo do DNA/genética , DNA de Cadeia Simples , Proteínas de Ligação a DNA/genética , Instabilidade Genômica/genética , RecQ Helicases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA