Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Pathol ; 186(5): 1066-77, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27021937

RESUMO

Fibrogenesis involves a dynamic interplay between factors that promote the biosynthesis and deposition of extracellular matrix along with pathways that degrade the extracellular matrix and eliminate the primary effector cells. Opposing the often held perception that fibrotic tissue is permanent, animal studies and clinical data now demonstrate the highly plastic nature of organ fibrosis that can, under certain circumstances, regress. This review describes the current understanding of the mechanisms whereby the lung is known to resolve fibrosis focusing on degradation of the extracellular matrix, removal of myofibroblasts, and the role of inflammatory cells. Although there are significant gaps in understanding lung fibrosis resolution, accelerated improvements in biotechnology and bioinformatics are expected to improve the understanding of these mechanisms and have high potential to lead to novel and effective restorative therapies in the treatment not only of pulmonary fibrosis, but also of a wide-ranging spectrum of chronic disorders.


Assuntos
Matriz Extracelular/metabolismo , Fibrose Pulmonar/fisiopatologia , Animais , Colágeno/fisiologia , Enzimas/fisiologia , Matriz Extracelular/fisiologia , Humanos , Lisossomos/metabolismo , Camundongos , Modelos Animais , Proteólise , Fibrose Pulmonar/metabolismo
2.
Am J Respir Cell Mol Biol ; 49(5): 845-54, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23795648

RESUMO

Pulmonary surfactant protein-C (SP-C) gene-targeted mice (Sftpc(-/-)) develop progressive lung inflammation and remodeling. We hypothesized that SP-C deficiency reduces the ability to suppress repetitive inflammatory injury. Sftpc(+/+) and Sftpc(-/-) mice given three doses of bacterial LPS developed airway and airspace inflammation, which was more intense in the Sftpc(-/-) mice at 3 and 5 days after the final dose. Compared with Sftpc(+/+)mice, inflammatory injury persisted in the lungs of Sftpc(-/-) mice 30 days after the final LPS challenge. Sftpc(-/-) mice showed LPS-induced airway goblet cell hyperplasia with increased detection of Sam pointed Ets domain and FoxA3 transcription factors. Sftpc(-/-) type II alveolar epithelial cells had increased cytokine expression after LPS exposure relative to Sftpc(+/+) cells, indicating that type II cell dysfunction contributes to inflammatory sensitivity. Microarray analyses of isolated type II cells identified a pattern of enhanced expression of inflammatory genes consistent with an intrinsic low-level inflammation resulting from SP-C deficiency. SP-C-containing clinical surfactant extract (Survanta) or SP-C/phospholipid vesicles blocked LPS signaling through the LPS receptor (Toll-like receptor [TLR] 4/CD14/MD2) in human embryonic kidney 293T cells, indicating that SP-C blocks LPS-induced cytokine production by a TLR4-dependent mechanism. Phospholipid vesicles alone did not modify the TLR4 response. In vivo deficiency of SP-C leads to inflammation, increased cytokine production by type II cells, and persistent inflammation after repetitive LPS stimulation.


Assuntos
Endotoxinas , Pulmão/metabolismo , Peptídeos/deficiência , Pneumonia/metabolismo , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Produtos Biológicos/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células Caliciformes/imunologia , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Células HEK293 , Fator 3-gama Nuclear de Hepatócito/metabolismo , Humanos , Hiperplasia , Imunidade Inata , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Receptores de Lipopolissacarídeos/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Peptídeos/genética , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/imunologia , Pneumonia/patologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteína C Associada a Surfactante Pulmonar , Transdução de Sinais , Fatores de Tempo , Receptor 4 Toll-Like/metabolismo
3.
Respir Res ; 14: 19, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23399055

RESUMO

BACKGROUND: Individuals with deficiencies of pulmonary surfactant protein C (SP-C) develop interstitial lung disease (ILD) that is exacerbated by viral infections including respiratory syncytial virus (RSV). SP-C gene targeted mice (Sftpc -/-) lack SP-C, develop an ILD-like disease and are susceptible to infection with RSV. METHODS: In order to determine requirements for correction of RSV induced injury we have generated compound transgenic mice where SP-C expression can be induced on the Sftpc -/- background (SP-C/Sftpc -/-) by the administration of doxycycline (dox). The pattern of induced SP-C expression was determined by immunohistochemistry and processing by Western blot analysis. Tissue and cellular inflammation was measured following RSV infection and the RSV-induced cytokine response of isolated Sftpc +/+ and -/- type II cells determined. RESULTS: After 5 days of dox administration transgene SP-C mRNA expression was detected by RT-PCR in the lungs of two independent lines of bitransgenic SP-C/Sftpc -/- mice (lines 55.3 and 54.2). ProSP-C was expressed in the lung, and mature SP-C was detected by Western blot analysis of the lavage fluid from both lines of SP-C/Sftpc -/- mice. Induced SP-C expression was localized to alveolar type II cells by immunostaining with an antibody to proSP-C. Line 55.3 SP-C/Sftpc -/- mice were maintained on or off dox for 7 days and infected with 2.6x107 RSV pfu. On day 3 post RSV infection total inflammatory cell counts were reduced in the lavage of dox treated 55.3 SP-C/Sftpc -/- mice (p = 0.004). The percentage of neutrophils was reduced (p = 0.05). The viral titers of lung homogenates from dox treated 55.3 SP-C/Sftpc -/- mice were decreased relative to 55.3 SP-C/Sftpc -/- mice without dox (p = 0.01). The cytokine response of Sftpc -/- type II cells to RSV was increased over that of Sftpc +/+ cells. CONCLUSIONS: Transgenic restoration of SP-C reduced inflammation and improved viral clearance in the lungs of SP-C deficient mice. The loss of SP-C in alveolar type II cells compromises their response to infection. These findings show that the restoration of SP-C in Sftpc -/- mice in response to RSV infection is a useful model to determine parameters for therapeutic intervention.


Assuntos
Lesão Pulmonar/metabolismo , Proteína C Associada a Surfactante Pulmonar/genética , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sinciciais Respiratórios , Animais , Células Cultivadas , Regulação para Baixo/genética , Lesão Pulmonar/genética , Lesão Pulmonar/prevenção & controle , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Proteína C Associada a Surfactante Pulmonar/biossíntese , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Carga Viral/métodos
4.
J Immunol ; 188(9): 4468-75, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22467655

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by peribronchial and perivascular inflammation and largely irreversible airflow obstruction. Acute disease exacerbations, due frequently to viral infections, lead to enhanced disease symptoms and contribute to long-term progression of COPD pathology. Previously, we demonstrated that NK cells from cigarette smoke (CS)-exposed mice exhibit enhanced effector functions in response to stimulating cytokines or TLR ligands. In this article, we show that the activating receptor NKG2D is a key mediator for CS-stimulated NK cell hyperresponsiveness, because CS-exposed NKG2D-deficient mice (Klrk1(-/-)) did not exhibit enhanced effector functions as assessed by cytokine responsiveness. NK cell cytotoxicity against MHC class I-deficient targets was not affected in a COPD model. However, NK cells from CS-exposed mice exhibit greater cytotoxic activity toward cells that express the NKG2D ligand RAET1ε. We also demonstrate that NKG2D-deficient mice exhibit diminished airway damage and reduced inflammation in a model of viral COPD exacerbation, which do not affect viral clearance. Furthermore, adoptive transfer of NKG2D(+) NK cells into CS-exposed, influenza-infected NKG2D-deficient mice recapitulated the phenotypes observed in CS-exposed, influenza-infected wild-type mice. Our findings indicate that NKG2D stimulation during long-term CS exposure is a central pathway in the development of NK cell hyperresponsiveness and influenza-mediated exacerbations of COPD.


Assuntos
Vírus da Influenza A Subtipo H3N2/imunologia , Células Matadoras Naturais/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Infecções por Orthomyxoviridae/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Células Matadoras Naturais/patologia , Camundongos , Camundongos Knockout , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/patologia , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/virologia
5.
Pulm Med ; 2011: 653524, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21660239

RESUMO

Injury to the distal respiratory epithelium has been implicated as an underlying cause of idiopathic lung diseases. Mutations that result in SP-C deficiencies are linked to a small subset of spontaneous and familial cases of interstitial lung disease (ILD) and interstitial pulmonary fibrosis (IPF). Gene-targeted mice that lack SP-C (Sftpc(-/-)) develop an irregular ILD-like disease with age and are a model of the human SP-C related disease. In the current study, we investigated whether rapamycin could ameliorate bleomycin-induced fibrosis in the lungs of Sftpc(-/-) mice. Sftpc(+/+) and -/- mice were exposed to bleomycin with either preventative administration of rapamycin or therapeutic administration beginning eight days after the bleomycin injury. Rapamycin-treatment increased weight loss and decreased survival of bleomycin-treated Sftpc(+/+) and Sftpc(-/-) mice. Rapamycin did not reduce the fibrotic disease in the prophylactic or rescue experiments of either genotype of mice. Further, rapamycin treatment augmented airway resistance and reduced lung compliance of bleomycin-treated Sftpc(-/-) mice. Rapamycin treatment was associated with an increased expression of profibrotic Th2 cytokines and reduced expression of INF-γ. These findings indicate that novel therapeutics will be required to treat individuals with SP-C deficient ILD/IPF.

6.
Curr Pharm Biotechnol ; 12(9): 1447-54, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21401520

RESUMO

Pulmonary fibrosis is an unremitting degenerative lung disease that has an associated high mortality. The major pathological features include the growth of fibroblasts, emergence of myofibroblasts and their production of extracellular matrix that distorts the peripheral lung tissue and impairs respiratory function. Efforts to pharmacologically reduce inflammation, inhibit fibroblast growth, or matrix synthesis have not been successful in ameliorating disease. Genetic mutations associated with rare hereditary forms of interstitial lung disease (ILD) and idiopathic pulmonary fibrosis (IPF) link definitive causes to this enigmatic group of diseases. The generation of mouse models with similar genetic lesions or deficiencies is providing insight into the mechanisms that lead to fibrosis. Mutations that alter components of pulmonary surfactant or surfactant homeostasis have been associated with specific forms of ILD and/or IPF. This small but growing collection of IPF related surfactant dysfunction mutations implicate respiratory epithelial cell injury as an early event in the molecular pathogenesis and progression of fibrosis. Determining the mechanisms for genetically defined examples of IPF should be informative for investigating the larger segment of IPF where the underlying cause remains obscure.


Assuntos
Fibrose Pulmonar/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos
7.
Pediatr Allergy Immunol Pulmonol ; 23(1): 9-14, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22087431

RESUMO

Interstitial lung diseases (ILDs) occur across the lifespan, from birth to advanced age. However, the causes, clinical manifestations, histopathology, and management of ILD differ greatly among infants, older children, and adults. The historical approach of classifying childhood ILD (chILD) using adult classification schemes may therefore have done more harm than good. Nevertheless, identification of novel forms of chILD in the past decade, such as surfactant metabolism dysfunction disorders and neuroendocrine cell hyperplasia of infancy (NEHI), as well as genomic analysis of adult ILDs, has taught us that identical genotypes may result in distinct phenotypes at different ages and developmental stages, and that lung developmental pathways and cellular phenotypes are often recapitulated in adult ILDs. Thus comparison of the pathophysiology of ILD in children and adults in the context of lung development is useful in understanding the pathogenesis of these disorders, and may lead to novel therapeutic interventions for ILDs at all ages.

8.
Am J Pathol ; 175(1): 3-16, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19497999

RESUMO

Fibrogenesis is an often-deadly process with increasing world-wide incidence and limited therapeutic options. Pulmonary fibrogenesis involves remodeling of the distal airspace and parenchyma of the lung, and is characterized by excessive extracellular matrix deposition and accumulation of apoptosis-resistant myofibroblasts. Recent studies have added significantly to our understanding of the complex mechanisms involved in lung fibrogenesis. Emerging concepts in this field include the critical role of the epithelium, particularly type II pneumocytes, in the initiation and perpetuation of fibrosis in response to either endogenous or exogenous stress; a growing awareness of alternative activation of macrophages in tissue remodeling; growing appreciation of the alternative origins and phenotypic plasticity of fibroblasts; the roles of epigenetic reprogramming and context-dependent signaling in profibrotic phenotype alterations; and recognition of the importance of cross talk and convergence of intracellular signaling pathways. In vitro, in vivo, and in silico approaches support a paradigm of "disordered re-development" of the lung. Designing effective antifibrotic interventions will require accurate understanding of the complex interactions among the genetic, environmental, epigenetic, biochemical, cellular, and contextual abnormalities that promote pulmonary fibrogenesis.


Assuntos
Fibrose Pulmonar/fisiopatologia , Animais , Humanos
9.
Am J Physiol Lung Cell Mol Physiol ; 297(1): L64-72, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19304906

RESUMO

Patients with mutations in the pulmonary surfactant protein C (SP-C) gene develop interstitial lung disease and pulmonary exacerbations associated with viral infections including respiratory syncytial virus (RSV). Pulmonary infection with RSV caused more severe interstitial thickening, air space consolidation, and goblet cell hyperplasia in SP-C-deficient (Sftpc(-/-)) mice compared with SP-C replete mice. The RSV-induced pathology resolved more slowly in Sftpc(-/-) mice with lung inflammation persistent up to 30 days postinfection. Polymorphonuclear leukocyte and macrophage counts were increased in the bronchoalveolar lavage (BAL) fluid of Sftpc(-/-) mice. Viral titers and viral F and G protein mRNA were significantly increased in both Sftpc(-/-) and heterozygous Sftpc(+/-) mice compared with controls. Expression of Toll-like receptor 3 (TLR3) mRNA was increased in the lungs of Sftpc(-/-) mice relative to Sftpc(+/+) mice before and after RSV infection. Consistent with the increased TLR3 expression, BAL inflammatory cells were increased in the Sftpc(-/-) mice after exposure to a TLR3-specific ligand, poly(I:C). Preparations of purified SP-C and synthetic phospholipids blocked poly(I:C)-induced TLR3 signaling in vitro. SP-C deficiency increases the severity of RSV-induced pulmonary inflammation through regulation of TLR3 signaling.


Assuntos
Proteína C Associada a Surfactante Pulmonar/deficiência , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/patologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/virologia , Contagem de Células , Linhagem Celular , Colectinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação Viral da Expressão Gênica , Células Caliciformes/patologia , Células Caliciformes/virologia , Humanos , Hipertrofia , Ligantes , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos , Pneumonia/complicações , Pneumonia/patologia , Pneumonia/virologia , Proteína C Associada a Surfactante Pulmonar/metabolismo , RNA de Cadeia Dupla/metabolismo , Infecções por Vírus Respiratório Sincicial/complicações , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/genética , Fatores de Tempo , Receptor 3 Toll-Like/metabolismo
10.
J Immunol ; 181(1): 621-8, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18566429

RESUMO

To determine the role of surfactant protein C (SP-C) in host defense, SP-C-deficient (Sftpc-/-) mice were infected with the pulmonary pathogen Pseudomonas aeruginosa by intratracheal injection. Survival of young, postnatal day 14 Sftpc-/- mice was decreased in comparison to Sftpc+/+ mice. The sensitivity to Pseudomonas bacteria was specific to the 129S6 strain of Sftpc-/- mice, a strain that spontaneously develops interstitial lung disease-like lung pathology with age. Pulmonary bacterial load and leukocyte infiltration were increased in the lungs of Sftpc-/- mice 24 h after infection. Early influx of polymorphonuclear leukocytes in the lungs of uninfected newborn Sftpc-/- mice relative to Sftpc+/+ mice indicate that the lack of SP-C promotes proinflammatory responses in the lung. Mucin expression, as indicated by Alcian blue staining, was increased in the airways of Sftpc-/- mice following infection. Phagocytic activity of alveolar macrophages from Sftpc-/- mice was reduced. The uptake of fluorescent beads in vitro and the number of bacteria phagocytosed by alveolar macrophages in vivo was decreased in the Sftpc-/- mice. Alveolar macrophages from Sftpc-/- mice expressed markers of alternative activation that are associated with diminished pathogen response and advancing pulmonary fibrosis. These findings implicate SP-C as a modifier of alveolar homeostasis. SP-C plays an important role in innate host defense of the lung, enhancing macrophage-mediated Pseudomonas phagocytosis, clearance and limiting pulmonary inflammatory responses.


Assuntos
Macrófagos/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/imunologia , Proteína C Associada a Surfactante Pulmonar/deficiência , Proteína C Associada a Surfactante Pulmonar/imunologia , Proteína C Associada a Surfactante Pulmonar/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Hiperplasia/genética , Hiperplasia/metabolismo , Hiperplasia/patologia , Camundongos , Camundongos Knockout , Fagocitose , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/patologia , Proteína C Associada a Surfactante Pulmonar/genética , Taxa de Sobrevida
11.
Semin Perinatol ; 30(6): 341-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17142160

RESUMO

Advances in genetic engineering have allowed the creation of animals with additional or deleted genes. New genes may be inserted in mice, specific genes inactivated or "knocked out," and more complex animals created in which genes can be turned on or off at different times in development or in different tissues. These animal models allow for more detailed studies of the proteins encoded by the manipulated gene, an improved understanding of the pathophysiology of diseases resulting from the genetic alterations, and model organisms in which to study potential new therapies. Multiple mouse models involving genes important in surfactant production and regulation relevant to lung disease observed in human newborns have been created. This review will discuss the creation of such animals and illustrate their utility in understanding human disease.


Assuntos
Pneumopatias/genética , Proteínas Associadas a Surfactantes Pulmonares/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Animais , Modelos Animais de Doenças , Humanos , Recém-Nascido , Pneumopatias/metabolismo , Pneumopatias/fisiopatologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Proteínas Associadas a Surfactantes Pulmonares/fisiologia , Síndrome do Desconforto Respiratório do Recém-Nascido/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/fisiopatologia
12.
Am J Pathol ; 167(5): 1267-77, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16251411

RESUMO

Recent reports have linked mutations in the surfactant protein C gene (SFTPC) to familial forms of pulmonary fibrosis, but it is uncertain whether deficiency of mature SP-C contributes to disease pathogenesis. In this study, we evaluated bleomycin-induced lung fibrosis in mice with genetic deletion of SFTPC. Compared with wild-type (SFTPC+/+) controls, mice lacking surfactant protein C (SFTPC-/-) had greater lung neutrophil influx at 1 week after intratracheal bleomycin, greater weight loss during the first 2 weeks, and increased mortality. At 3 and 6 weeks after bleomycin, lungs from SFTPC-/- mice had increased fibroblast numbers, augmented collagen accumulation, and greater parenchymal distortion. Furthermore, resolution of fibrosis was delayed. Although remodeling was near complete in SFTPC+/+ mice by 6 weeks, SFTPC-/- mice did not return to baseline until 9 weeks after bleomycin. By terminal dUTP nick-end labeling staining, widespread cell injury was observed in SFTPC-/- and SFTPC+/+ mice 1 week after bleomycin; however, ongoing apoptosis of epithelial and interstitial cells occurred in lungs of SFTPC-/- mice, but not SFTPC+/+ mice, 6 weeks after bleomycin. Thus, SP-C functions to limit lung inflammation, inhibit collagen accumulation, and restore normal lung structure after bleomycin.


Assuntos
Fibrose Pulmonar/patologia , Proteína C Associada a Surfactante Pulmonar/fisiologia , Animais , Apoptose , Bleomicina/toxicidade , Células/patologia , Colágeno/análise , Modelos Animais de Doenças , Fibroblastos , Hidroxiprolina/análise , Marcação In Situ das Extremidades Cortadas , Contagem de Leucócitos , Pulmão/patologia , Camundongos , Camundongos Knockout , Neutrófilos , Peroxidase/análise , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/genética , Redução de Peso
13.
Am J Physiol Lung Cell Mol Physiol ; 288(4): L625-32, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15579627

RESUMO

Genomic DNA from the mouse pulmonary surfactant protein C (SP-C) gene was analyzed in transgenic mice to identify DNA essential for alveolar type II cell-specific expression. SP-C promoter constructs extending either 13 or 4.8 kb upstream of the transcription start site directed lung-specific expression of the bacterial chloramphenicol acetyl transferase (CAT) reporter gene. In situ hybridization analysis demonstrated alveolar cell-specific expression in the lungs of adult transgenic mice, and the pattern of 4.8 SP-C-CAT expression during development paralleled that of the endogenous SP-C gene. With the use of deletion constructs, lung-specific, low-level CAT activity was detected in tissue assays of SP-C-CAT transgenic mice retaining 318 bp of the promoter. In transient and stable cell transfection experiments, the 4.8-kb SP-C promoter was 90-fold more active as a stably integrated gene. These findings indicate that 1) the 4.8-kb SP-C promoter is sufficient to direct cell-specific and developmental expression, 2) an enhancer essential for lung-specific expression maps to the proximal 318-bp promoter, and 3) the activity of the 4.8-kb SP-C promoter construct is highly dependent on its chromatin environment.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regiões Promotoras Genéticas/genética , Alvéolos Pulmonares/embriologia , Proteína C Associada a Surfactante Pulmonar/genética , Animais , Cloranfenicol O-Acetiltransferase/genética , Cloranfenicol O-Acetiltransferase/metabolismo , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Camundongos , Camundongos Transgênicos , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/metabolismo , Deleção de Sequência , Sítio de Iniciação de Transcrição , Transcrição Gênica , Transfecção
14.
J Biol Chem ; 278(16): 14291-8, 2003 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-12519727

RESUMO

SP-C-deficient (SP-C -/-) mice developed a severe pulmonary disorder associated with emphysema, monocytic infiltrates, epithelial cell dysplasia, and atypical accumulations of intracellular lipids in type II epithelial cells and alveolar macrophages. Whereas alveolar and tissue surfactant phospholipid pools were increased, levels of other surfactant proteins were not altered (SP-B) or were modestly increased (SP-A and SP-D). Analysis of pressure-volume curves and forced oscillatory dynamics demonstrated abnormal respiratory mechanics typical of emphysema. Lung disease was progressive, causing weight loss and cardiomegaly. Extensive alveolar remodeling was accompanied by type II cell hyperplasia, obliteration of pulmonary capillaries, and widespread expression of alpha-smooth muscle actin, indicating myofibroblast transformation in the lung parenchyma. Dysplastic epithelial cells lining conducting airways stained intensely for the mucin, MUC5A/C. Tissue concentrations of proinflammatory cytokines were not substantially altered in the SP-C (-/-) mice. Production of matrix metalloproteinases (MMP-2 and MMP-9) was increased in alveolar macrophages from SP-C (-/-) mice. Absence of SP-C caused a severe progressive pulmonary disorder with histologic features consistent with interstitial pneumonitis.


Assuntos
Enfisema/genética , Peptídeos/genética , Peptídeos/fisiologia , Pneumonia/genética , Animais , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Pulmão/metabolismo , Pulmão/patologia , Pulmão/ultraestrutura , Macrófagos/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Microscopia Eletrônica , Fosfolipídeos/metabolismo , Pressão , Precursores de Proteínas/metabolismo , Proteolipídeos/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína C Associada a Surfactante Pulmonar , Proteína D Associada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares
15.
J Appl Physiol (1985) ; 92(2): 519-26, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11796659

RESUMO

Although the surface properties of surfactant protein (SP)-B and SP-C are similar, the contributions that either protein may make to lung function have not been identified in vivo. Mutations in SP-B cause lethal respiratory failure at birth; however, SP-B null mice are deficient in both SP-B and SP-C. To identify potential contributions of SP-C to lung function in vivo, the following transgenic mice were generated and exposed to 95% O(2) for 3 days: (SP-B(+/+),SP-C(+/+)), (SP-B(+/+), SP-C(-/-)), (SP-B(+/-),SP-C(+/+)), (SP-B(+/-),SP-C(+/-)), and (SP-B(+/-),SP-C(-/-)). Hyperoxia altered pressure-volume curves in mice that were heterozygous for SP-B, and these values were further decreased in (SP-B(+/-),SP-C(-/-)) mice. Likewise, alveolar interleukin (IL)-6 and IL-1 beta were maximally increased by O(2) exposure of (SP-B(+/-),SP-C(-/-)) mice compared with the other genotypes. Lung hysteresivity was lower in the (SP-B(+/-),SP-C(-/-)) mice. Surfactant isolated from (SP-B(+/+),SP-C(-/-)) and (SP-B(+/-),SP-C(-/-)) mice failed to stabilize the surface tension of microbubbles, showing that SP-C plays a role in stabilization or recruitment of phospholipid films at low bubble radius. Genetically decreased levels of SP-B combined with superimposed O(2)-induced injury reveals the distinct contribution of SP-C to pulmonary function in vivo.


Assuntos
Oxigênio , Pneumonia/induzido quimicamente , Pneumonia/fisiopatologia , Proteolipídeos/fisiologia , Surfactantes Pulmonares/deficiência , Surfactantes Pulmonares/fisiologia , Animais , Líquido da Lavagem Broncoalveolar/química , Citocinas/análise , Hiperóxia/fisiopatologia , Pulmão/fisiologia , Medidas de Volume Pulmonar , Camundongos , Camundongos Transgênicos , Fosfatidilcolinas/análise , Pressão , Proteínas/análise , Proteolipídeos/metabolismo , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Mecânica Respiratória , Tensão Superficial
16.
J Biol Chem ; 277(6): 4519-25, 2002 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-11733512

RESUMO

GATA-6, a member of the GATA family of zinc finger domain containing transcription factors, is expressed in endodermally derived tissues including the lung, where GATA-6 influences the transcription of target genes, TTF-1, and surfactant proteins. Whereas GATA-6 did not directly alter expression of sp-C constructs in HeLa cells, GATA-6 synergistically activated sp-C gene transcription when co-expressed with TTF-1, supporting the concept that GATA-6 and TTF-1 might directly interact to influence target gene expression. GST-GATA-6 directly co-precipitated with TTF-1 after in vitro translation and directly interacted with the TTF-1-binding element in the sp-C promoter. Binding of TTF-1 to GATA-6 required the homeodomain of TTF-1, but optimal interactions with GATA-6 required the homeodomain and either carboxyl- or amino-terminal domains of TTF-1. Interactions between TTF-1 and GATA-6 required the amino-terminal and zinc finger domains of GATA-6. Although GATA-4 also interacted with TTF-1 in two-hybrid assays, GATA-4 was not as active as GATA-6 in the activation of the sp-C promoter with TTF-1. Deletion and substitution mutations between GATA-4 and GATA-6 demonstrated that the carboxyl-terminal zinc finger domain of GATA-6 contributed to its synergistic activation of the sp-C promoter with TTF-1. GATA-6 influenced the activity of the sp-C promoter, binding and acting synergistically with TTF-1.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas Nucleares/fisiologia , Proteolipídeos/genética , Surfactantes Pulmonares/genética , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , DNA , Primers do DNA , Células Epiteliais/metabolismo , Fator de Transcrição GATA6 , Células HeLa , Humanos , Pulmão/citologia , Pulmão/metabolismo , Camundongos , Regiões Promotoras Genéticas , Proteolipídeos/química , Surfactantes Pulmonares/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Fator Nuclear 1 de Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA