Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomolecules ; 14(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672515

RESUMO

Cerebrovascular disease accounts for major neurologic disabilities in patients with type 2 diabetes mellitus (DM). A potential association of mitochondrial DNA (mtDNA) and inflammation with cerebral vessel remodeling in patients with type 2 DM was evaluated. A cohort of 150 patients and 30 healthy controls were assessed concerning urinary albumin/creatinine ratio (UACR), synaptopodin, podocalyxin, kidney injury molecule-1 (KIM-1), N-acetyl-ß-(D)-glucosaminidase (NAG), interleukins IL-17A, IL-18, IL-10, tumor necrosis factor-alpha (TNFα), intercellular adhesion molecule-1 (ICAM-1). MtDNA-CN and nuclear DNA (nDNA) were quantified in peripheral blood and urine by qRT-PCR. Cytochrome b (CYTB) gene, subunit 2 of NADH dehydrogenase (ND2), and beta 2 microglobulin nuclear gene (B2M) were assessed by TaqMan assays. mtDNA-CN was defined as the ratio of the number of mtDNA/nDNA copies, through analysis of the CYTB/B2M and ND2/B2M ratio; cerebral Doppler ultrasound: intima-media thickness (IMT)-the common carotid arteries (CCAs), the pulsatility index (PI) and resistivity index (RI)- the internal carotid arteries (ICAs) and middle cerebral arteries (MCAs), the breath-holding index (BHI). The results showed direct correlations of CCAs-IMT, PI-ICAs, PI-MCAs, RI-ICAs, RI-MCAs with urinary mtDNA, IL-17A, IL-18, TNFα, ICAM-1, UACR, synaptopodin, podocalyxin, KIM-1, NAG, and indirect correlations with serum mtDNA, IL-10. BHI correlated directly with serum IL-10, and serum mtDNA, and negatively with serum IL-17A, serum ICAM-1, and NAG. In neurologically asymptomatic patients with type 2 DM cerebrovascular remodeling and impaired cerebrovascular reactivity may be associated with mtDNA variations and inflammation from the early stages of diabetic kidney disease.


Assuntos
DNA Mitocondrial , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Inflamação , Humanos , DNA Mitocondrial/genética , Masculino , Feminino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Pessoa de Meia-Idade , Inflamação/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Idoso , Remodelação Vascular/genética , Estudos de Casos e Controles
2.
Metabolites ; 13(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37623837

RESUMO

Complications due to type 2 diabetes mellitus (T2DM) such as diabetic kidney disease (DKD) and cerebral small vessel disease (CSVD) have a powerful impact on mortality and morbidity. Our current diagnostic markers have become outdated as T2DM-related complications continue to develop. The aim of the investigation was to point out the relationship between previously selected metabolites which are potentially derived from gut microbiota and indicators of endothelial, proximal tubule (PT), and podocyte dysfunction, and neurosonological indices. The study participants were 20 healthy controls and 90 T2DM patients divided into three stages: normoalbuminuria, microalbuminuria, and macroalbuminuria. Serum and urine metabolites were determined by untargeted and targeted metabolomic techniques. The markers of endothelial, PT and podocyte dysfunction were assessed by ELISA technique, and the neurosonological indices were provided by an ultrasound device with high resolution (MYLAB 8-ESAOTE Italy). The descriptive statistical analysis was followed by univariable and multivariable linear regression analyses. In conclusion, in serum, arginine (sArg), butenoylcarnitine (sBCA), and indoxyl sulfate (sIS) expressed a biomarker potential in terms of renal endothelial dysfunction and carotid atherosclerosis, whereas sorbitol (sSorb) may be a potential biomarker of blood-brain barrier (BBB) dysfunction. In urine, BCA and IS were associated with markers of podocyte damage, whereas PCS correlated with markers of PT dysfunction.

3.
Biomolecules ; 13(7)2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37509122

RESUMO

Diabetic kidney disease (DKD) is one of the most debilitating complications of type 2 diabetes mellitus (T2DM), as it progresses silently to end-stage renal disease (ESRD). The discovery of novel biomarkers of early DKD becomes acute, as its incidence is reaching catastrophic proportions. Our study aimed to quantify previously identified metabolites from serum and urine through untargeted ultra-high-performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry (UHPLC-QTOF-ESI+-MS) techniques, such as the following: arginine, dimethylarginine, hippuric acid, indoxyl sulfate, p-cresyl sulfate, L-acetylcarnitine, butenoylcarnitine and sorbitol. The study concept was based on the targeted analysis of selected metabolites, using the serum and urine of 20 healthy subjects and 90 T2DM patients with DKD in different stages (normoalbuminuria-uACR < 30 mg/g; microalbuminuria-uACR 30-300 mg/g; macroalbuminuria-uACR > 300 mg/g). The quantitative evaluation of metabolites was performed with pure standards, followed by the validation methods such as the limit of detection (LOD) and the limit of quantification (LOQ). The following metabolites from this study resulted as possible biomarkers of early DKD: in serum-arginine, dimethylarginine, hippuric acid, indoxyl sulfate, butenoylcarnitine and sorbitol and in urine-p-cresyl sulfate.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Microbioma Gastrointestinal , Humanos , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Indicã , Metabolômica/métodos , Biomarcadores , Arginina , Sulfatos
4.
Ren Fail ; 45(1): 2232046, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37439202

RESUMO

INTRODUCTION: East-European data on cancer in patients undergoing hemodialysis (HD) are scarce. This study aimed to assess the pattern of cancer and related mortality in patients with end-stage kidney disease (ESKD) undergoing HD. METHODS: Retrospectively analyzing data from 7 HD centers, this study examined 1377 incident HD patients divided into three groups: no-cancers (NoC), cancers that occurred prior to HD initiation (CPI) and de novo cancer developed after HD initiation (DNC). Mortality risk and survival trends within groups were analyzed using Cox regression and Kaplan-Meier methods. RESULTS: In the cohort, 89.46% of the patients had no cancer (NoC group), 3.63% had cancer before (CPI group), and 6.89% had cancer after HD initiation (DNC group). The mean time from HD initiation to DNC diagnosis was 1 [2.75] years. Older age was associated with a higher risk of developing DNC (p < 0.001). Chronic tubulointerstitial nephritis (CTIN) is more prevalent in cancer patients. The most common cancer sites among DNC patients were the digestive (29.47%) and urinary tracts (18.95%), while those in CPI subjects were hematologic (22%) and digestive (20%). Cancer was an independent predictor of mortality risk (HR = 6.9, 95% [CI]:4.5-10.6, p < 0.001). CONCLUSIONS: East-European ESKD patients undergoing HD have a high incidence of de novo cancers whose primary cancer sites are the digestive and urinary tracts. Almost half of the HD patients with CPI have hematologic and digestive tract cancers. Age and CTIN were associated with cancer risk. Cancer is an independent risk factor for all-cause mortality in patients undergoing hemodialysis (HD).


Assuntos
Falência Renal Crônica , Neoplasias , Nefrite Intersticial , Humanos , Estudos Retrospectivos , Neoplasias/epidemiologia , Diálise Renal/efeitos adversos , Falência Renal Crônica/terapia
5.
Biomedicines ; 11(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37371622

RESUMO

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease; however, few biomarkers of its early identification are available. The aim of the study was to assess new biomarkers in the early stages of DKD in type 2 diabetes mellitus (DM) patients. This cross-sectional pilot study performed an integrated metabolomic profiling of blood and urine in 90 patients with type 2 DM, classified into three subgroups according to albuminuria stage from P1 to P3 (30 normo-, 30 micro-, and 30 macroalbuminuric) and 20 healthy controls using high-performance liquid chromatography and mass spectrometry (UPLC-QTOF-ESI* MS). From a large cohort of separated and identified molecules, 33 and 39 amino acids and derivatives from serum and urine, respectively, were selected for statistical analysis using Metaboanalyst 5.0. online software. The multivariate and univariate algorithms confirmed the relevance of some amino acids and derivatives as biomarkers that are responsible for the discrimination between healthy controls and DKD patients. Serum molecules such as tiglylglycine, methoxytryptophan, serotonin sulfate, 5-hydroxy lysine, taurine, kynurenic acid, and tyrosine were found to be more significant in the discrimination between group C and subgroups P1-P2-P3. In urine, o-phosphothreonine, aspartic acid, 5-hydroxy lysine, uric acid, methoxytryptophan, were among the most relevant metabolites in the discrimination between group C and DKD group, as well between subgroups P1-P2-P3. The identification of these potential biomarkers may indicate their involvement in the early DKD and 2DM progression, reflecting kidney injury at specific sites along the nephron, even in the early stages of DKD.

6.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372951

RESUMO

Mitochondrial dysfunction is an important mechanism contributing to the development and progression of diabetic kidney disease (DKD). Mitochondrial DNA (mtDNA) levels in blood and urine were evaluated in relation to podocyte injury and proximal tubule (PT) dysfunction, as well as to a specific inflammatory response in normoalbuminuric DKD. A total of 150 type 2 diabetes mellitus (DM) patients (52 normoalbuminuric, 48 microalbuminuric, and 50 macroalbuminuric ones, respectively) and 30 healthy controls were assessed concerning the urinary albumin/creatinine ratio (UACR), biomarkers of podocyte damage (synaptopodin and podocalyxin), PT dysfunction (kidney injury molecule-1 (KIM-1) and N-acetyl-ß-(D)-glucosaminidase (NAG)), and inflammation (serum and urinary interleukins (IL-17A, IL-18, and IL-10)). MtDNA-CN and nuclear DNA (nDNA) were quantified in peripheral blood and urine via qRT-PCR. MtDNA-CN was defined as the ratio of the number of mtDNA/nDNA copies via analysis of the CYTB/B2M and ND2/B2M ratio. Multivariable regression analysis provided models in which serum mtDNA directly correlated with IL-10 and indirectly correlated with UACR, IL-17A, and KIM-1 (R2 = 0.626; p < 0.0001). Urinary mtDNA directly correlated with UACR, podocalyxin, IL-18, and NAG, and negatively correlated with eGFR and IL-10 (R2 = 0.631; p < 0.0001). Mitochondrial DNA changes in serum and urine display a specific signature in relation to inflammation both at the podocyte and tubular levels in normoalbuminuric type 2 DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Interleucina-10 , Interleucina-17 , Interleucina-18/genética , DNA Mitocondrial/genética , Albuminúria/urina , Inflamação/genética , Mitocôndrias/genética , Biomarcadores/urina
7.
Biomedicines ; 11(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37189675

RESUMO

Chronic kidney disease (CKD) has emerged as one of the most progressive diseases with increased mortality and morbidity. Metabolomics offers new insights into CKD pathogenesis and the discovery of new biomarkers for the early diagnosis of CKD. The aim of this cross-sectional study was to assess metabolomic profiling of serum and urine samples obtained from CKD patients. Untargeted metabolomics followed by multivariate and univariate analysis of blood and urine samples from 88 patients with CKD, staged by estimated glomerular filtration rate (eGFR), and 20 healthy control subjects was performed using ultra-high-performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry. Serum levels of Oleoyl glycine, alpha-lipoic acid, Propylthiouracil, and L-cysteine correlated directly with eGFR. Negative correlations were observed between serum 5-Hydroxyindoleacetic acid, Phenylalanine, Pyridoxamine, Cysteinyl glycine, Propenoylcarnitine, Uridine, and All-trans retinoic acid levels and eGFR. In urine samples, the majority of molecules were increased in patients with advanced CKD as compared with early CKD patients and controls. Amino acids, antioxidants, uremic toxins, acylcarnitines, and tryptophane metabolites were found in all CKD stages. Their dual variations in serum and urine may explain their impact on both glomerular and tubular structures, even in the early stages of CKD. Patients with CKD display a specific metabolomic profile. Since this paper represents a pilot study, future research is needed to confirm our findings that metabolites can serve as indicators of early CKD.

8.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047187

RESUMO

Type 2 diabetes mellitus (T2DM) represents an important microvascular disease concerning the kidney and the brain. Gut dysbiosis and microbiota-derived metabolites may be in relation with early pathophysiological changes in diabetic kidney disease (DKD). The aim of the study was to find new potential gut-derived biomarkers involved in the pathogenesis of early DKD, with a focus on the complex interconnection of these biomarkers with podocyte injury, proximal tubule dysfunction, renal and cerebrovascular endothelial dysfunction. The study design consisted of metabolite profiling of serum and urine of 90 T2DM patients (subgroups P1-normoalbuminuria, P2-microalbuminuria, P3-macroalbuminuria) and 20 healthy controls (group C), based on ultra-high-performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry analysis (UHPLC-QTOF-ESI+-MS). By multivariate and univariate analyses of serum and urine, which included Partial Least Squares Discriminant Analysis (PLSDA), Variable Importance Plots (VIP), Random Forest scores, One Way ANOVA and Biomarker analysis, there were discovered metabolites belonging to nitrogen metabolic pathway and retinoic acid signaling pathway which differentiate P1 group from P2, P3, C groups. Tyrosine, phenylalanine, indoxyl sulfate, serotonin sulfate, and all-trans retinoic acid express the metabolic fingerprint of P1 group vs. P2, P3, C groups, revealing a particular pattern in early DKD in T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Albuminúria/metabolismo , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA