Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
mBio ; 14(5): e0152123, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37737633

RESUMO

IMPORTANCE: Candida albicans is a commensal fungus that colonizes the human oral cavity and gastrointestinal tract but also causes mucosal as well as invasive disease. The expression of virulence traits in C. albicans clinical isolates is heterogeneous and the genetic basis of this heterogeneity is of high interest. The C. albicans reference strain SC5314 is highly invasive and expresses robust filamentation and biofilm formation relative to many other clinical isolates. Here, we show that SC5314 derivatives are heterozygous for the transcription factor Rob1 and contain an allele with a rare gain-of-function SNP that drives filamentation, biofilm formation, and virulence in a model of oropharyngeal candidiasis. These findings explain, in part, the outlier phenotype of the reference strain and highlight the role heterozygosity plays in the strain-to-strain variation of diploid fungal pathogens.


Assuntos
Candida albicans , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Alelos , Simbiose , Biofilmes , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifas/metabolismo
2.
bioRxiv ; 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37398495

RESUMO

Candida albicans is a diploid human fungal pathogen that displays significant genomic and phenotypic heterogeneity over a range of virulence traits and in the context of a variety of environmental niches. Here, we show that the effects of Rob1 on biofilm and filamentation virulence traits is dependent on both the specific environmental condition and the clinical strain of C. albicans . The C. albicans reference strain SC5314 is a ROB1 heterozygote with two alleles that differ by a single nucleotide polymorphism at position 946 resulting in a serine or proline containing isoform. An analysis of 224 sequenced C. albicans genomes indicates that SC5314 is the only ROB1 heterozygote documented to date and that the dominant allele contains a proline at position 946. Remarkably, the ROB1 alleles are functionally distinct and the rare ROB1 946S allele supports increased filamentation in vitro and increased biofilm formation in vitro and in vivo, suggesting it is a phenotypic gain-of-function allele. SC5314 is amongst the most highly filamentous and invasive strains characterized to date. Introduction of the ROB1 946S allele into a poorly filamenting clinical isolate increases filamentation and conversion of an SC5314 laboratory strain to a ROB1 946S homozygote increases in vitro filamentation and biofilm formation. In a mouse model of oropharyngeal infection, the predominant ROB1 946P allele establishes a commensal state while the ROB1 946S phenocopies the parent strain and invades into the mucosae. These observations provide an explanation for the distinct phenotypes of SC5314 and highlight the role of heterozygosity as a driver of C. albicans phenotypic heterogeneity. Importance: Candida albicans is a commensal fungus that colonizes human oral cavity and gastrointestinal tracts but also causes mucosal as well as invasive disease. The expression of virulence traits in C. albicans clinical isolates is heterogenous and the genetic basis of this heterogeneity is of high interest. The C. albicans reference strain SC5314 is highly invasive and expresses robust filamentation and biofilm formation relative to many other clinical isolates. Here, we show that SC5314 derivatives are heterozygous for the transcription factor Rob1 and contain an allele with a rare gain-of-function SNP that drives filamentation, biofilm formation, and virulence in a model of oropharyngeal candidiasis. These finding explain, in part, the outlier phenotype of the reference strain and highlight the role of heterozygosity plays in the strain-to-strain variation of diploid fungal pathogens.

3.
Front Cell Infect Microbiol ; 12: 855229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392604

RESUMO

Candida sp. are among the most common fungal commensals found in the human microbiome. Although Candida can be found residing harmlessly on the surface of the skin and mucosal membranes, these opportunistic fungi have the potential to cause superficial skin, nail, and mucus membrane infections as well as life threatening systemic infections. Severity of infection is dependent on both fungal and host factors including the immune status of the host. Virulence factors associated with Candida sp. pathogenicity include adhesin proteins, degradative enzymes, phenotypic switching, and morphogenesis. A central transcriptional regulator of morphogenesis, the transcription factor Efg1 was first characterized in Candida albicans in 1997. Since then, EFG1 has been referenced in the Candida literature over three thousand times, with the number of citations growing daily. Arguably one of the most well studied genes in Candida albicans, EFG1 has been referenced in nearly all contexts of Candida biology from the development of novel therapeutics to white opaque switching, hyphae morphology to immunology. In the review that follows we will synthesize the research that has been performed on this extensively studied transcription factor and highlight several important unanswered questions.


Assuntos
Candida albicans , Proteínas de Ligação a DNA , Proteínas Fúngicas , Fatores de Transcrição , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Hifas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
mBio ; 13(1): e0344721, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012341

RESUMO

Oropharyngeal candidiasis (OPC) is a common infection that complicates a wide range of medical conditions and can cause either mild or severe disease depending on the patient. The pathobiology of OPC shares many features with candidal biofilms of abiotic surfaces. The transcriptional regulation of C. albicans biofilm formation on abiotic surfaces has been extensively characterized and involves six key transcription factors (Efg1, Ndt80, Rob1, Bcr1, Brg1, and Tec1). To determine if the in vitro biofilm transcriptional regulatory network also plays a role in OPC, we carried out a systematic genetic interaction analysis in a mouse model of C. albicans OPC. Whereas each of the six transcription factors are required for in vitro biofilm formation, only three homozygous deletion mutants (tec1ΔΔ, bcr1ΔΔ, and rob1ΔΔ) and one heterozygous mutant (tec1Δ/TEC1) have reduced infectivity in the mouse model of OPC. Although single mutants (heterozygous or homozygous) of BRG1 and EFG1 have no effect on fungal burden, double heterozygous and homozygous mutants have dramatically reduced infectivity, indicating a critical genetic interaction between these two transcription factors during OPC. Using epistasis analysis, we have formulated a genetic circuit, [EFG1+BRG1]→TEC1→BCR1, that is required for OPC infectivity and oral epithelial cell endocytosis. Surprisingly, we also found transcription factor mutants with in vitro defects in filamentation, such as efg1ΔΔ, rob1ΔΔ, and brg1ΔΔ filament, during oral infection and that reduced filamentation does not correlate with infectivity. Taken together, these data indicate that key in vitro biofilm transcription factors are involved in OPC but that the network characteristics and functional connections during infection are distinct from those observed in vivo. IMPORTANCE The pathology of oral candidiasis has features of biofilm formation, a well-studied process in vitro. Based on that analogy, we hypothesized that the network of transcription factors that regulates in vitro biofilm formation has similarities and differences during oral infection. To test this, we employed the first systematic genetic interaction analysis of C. albicans in a mouse model of oropharyngeal infection. This revealed that the six regulators involved in in vitro biofilm formation played roles in vivo but that the functional connections between factors were quite distinct. Surprisingly, we also found that while many of the factors are required for filamentation in vitro, none of the transcription factor deletion mutants was deficient for this key virulence trait in vivo. These observations clearly demonstrate that C. albicans regulates key aspects of its biology differently in vitro and in vivo.


Assuntos
Candidíase Bucal , Camundongos , Animais , Candidíase Bucal/microbiologia , Proteínas Fúngicas/genética , Homozigoto , Deleção de Sequência , Fatores de Transcrição/metabolismo , Candida albicans/genética , Regulação Fúngica da Expressão Gênica , Biofilmes
5.
mBio ; 12(1)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436441

RESUMO

The human fungal pathogen Cryptococcus neoformans is intrinsically resistant to the echinocandin antifungal drug caspofungin, which targets the ß-1,3-glucan synthase encoded by FKS1 Echinocandins have been on the market for 20 years, yet they are the newest class of antifungal drugs. Analysis of a C. neoformanspuf4Δ mutant, lacking the pumilio/FBF RNA binding protein family member Puf4, revealed exacerbated caspofungin resistance. In contrast, overexpression of PUF4 resulted in caspofungin sensitivity. The FKS1 mRNA contains three Puf4-binding elements (PBEs) in its 5' untranslated region. Puf4 binds with specificity to this region of FKS1 The FKS1 mRNA was destabilized in the puf4Δ mutant, and the abundance of the FKS1 mRNA was reduced compared to wild type, suggesting that Puf4 is a positive regulator of FKS1 mRNA stability. In addition to FKS1, the abundance of additional cell wall biosynthesis genes, including chitin synthases (CHS3, CHS4, and CHS6) and deacetylases (CDA1, CDA2, and CDA3) as well as a ß-1,6-glucan synthase gene (SKN1), was regulated by Puf4. The use of fluorescent dyes to quantify cell wall components revealed that the puf4Δ mutant had increased chitin content, suggesting a cell wall composition that is less reliant on ß-1,3-glucan. Overall, our findings suggest a mechanism by which caspofungin resistance, and more broadly, cell wall biogenesis, is regulated post-transcriptionally by Puf4.IMPORTANCECryptococcus neoformans is an environmental fungus that causes pulmonary and central nervous system infections. It is also responsible for 15% of AIDS-related deaths. A significant contributor to the high morbidity and mortality statistics is the lack of safe and effective antifungal therapies, especially in resource-poor settings. Yet, antifungal drug development has stalled in the pharmaceutical industry. Therefore, it is essential to understand the mechanism by which C. neoformans is resistant to caspofungin to design adjunctive therapies to potentiate the drug's activity toward this important pathogen.


Assuntos
Caspofungina/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/genética , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Parede Celular/metabolismo , Quitina/metabolismo , Quitina Sintase/metabolismo , Criptococose/microbiologia , Farmacorresistência Fúngica/fisiologia , Equinocandinas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucanos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae , beta-Glucanas/metabolismo
7.
G3 (Bethesda) ; 8(4): 1299-1314, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29472308

RESUMO

Genetic interaction analysis is a powerful approach to the study of complex biological processes that are dependent on multiple genes. Because of the largely diploid nature of the human fungal pathogen Candida albicans, genetic interaction analysis has been limited to a small number of large-scale screens and a handful for gene-by-gene studies. Complex haploinsufficiency, which occurs when a strain containing two heterozygous mutations at distinct loci shows a phenotype that is distinct from either of the corresponding single heterozygous mutants, is an expedient approach to genetic interactions analysis in diploid organisms. Here, we describe the construction of a barcoded-library of 133 heterozygous TF deletion mutants and deletion cassettes for designed to facilitate complex haploinsufficiency-based genetic interaction studies of the TF networks in C. albicans We have characterized the phenotypes of these heterozygous mutants under a broad range of in vitro conditions using both agar-plate and pooled signature tag-based assays. Consistent with previous studies, haploinsufficiency is relative uncommon. In contrast, a set of 12 TFs enriched in mutants with a role in adhesion were found to have altered competitive fitness at early time points in a murine model of disseminated candidiasis. Finally, we characterized the genetic interactions of a set of biofilm related TFs in the first two steps of biofilm formation, adherence and filamentation of adherent cells. The genetic interaction networks at each stage of biofilm formation are significantly different indicating that the network is not static but dynamic.


Assuntos
Candida albicans/genética , Candida albicans/patogenicidade , Haploinsuficiência/genética , Fatores de Transcrição/genética , Animais , Biofilmes , Candida albicans/crescimento & desenvolvimento , Candidíase/genética , Candidíase/microbiologia , Candidíase/patologia , Modelos Animais de Doenças , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Biblioteca Gênica , Redes Reguladoras de Genes , Heterozigoto , Fenótipo , Plâncton/metabolismo , Plasmídeos/metabolismo , Fatores de Transcrição/metabolismo , Virulência/genética
8.
Curr Genet ; 64(4): 883-888, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29318385

RESUMO

Complex biological processes are frequently regulated through networks comprised of multiple signaling pathways, transcription factors, and effector molecules. The identity of specific genes carrying out these functions is usually determined by single mutant genetic analysis. However, to understand how the individual genes/gene products function, it is necessary to determine how they interact with other components of the larger network; one approach to this is to use genetic interaction analysis. The human fungal pathogen Candida albicans regulates biofilm formation through an interconnected set of transcription factor hubs and is, therefore, an example of this type of complex network. Here, we describe experiments and analyses designed to understand how the C. albicans biofilm transcription factor hubs interact and to explore the role of network structure in its overall function. To do so, we analyzed published binding and genetic interaction data to characterize the topology of the network. The hubs are best characterized as a small world network that functions with high efficiency and low robustness (high fragility). Highly efficient networks rapidly transmit perturbations at given nodes to the rest of the network. Consistent with this model, we have found that relatively modest perturbations, such as reduction in the gene dosage of hub transcription factors by one-half, lead to significant alterations in target gene expression and biofilm fitness. C. albicans biofilm formation occurs under very specific environmental conditions and we propose that the fragile, small world structure of the genetic network is part of the mechanism that imposes this stringency.


Assuntos
Candida albicans/genética , Redes Reguladoras de Genes/genética , Fatores de Transcrição/genética , Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Humanos , Transdução de Sinais/genética
9.
PLoS Genet ; 13(8): e1006948, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28793308

RESUMO

Biofilm formation by Candida albicans is a key aspect of its pathobiology and is regulated by an integrated network of transcription factors (Bcr1, Brg1, Efg1, Ndt80, Rob1, and Tec1). To understand the details of how the transcription factors function together to regulate biofilm formation, we used a systematic genetic interaction approach based on generating all possible double heterozygous mutants of the network genes and quantitatively analyzing the genetic interactions between them. Overall, the network is highly susceptible to genetic perturbation with the six network heterozygous mutants all showing alterations in biofilm formation (haploinsufficiency). In addition, many double heterozygous mutants are as severely affected as homozygous deletions. As a result, the network shows properties of a highly interdependent 'small-world' network that is highly efficient but not robust. In addition, these genetic interaction data indicate that TEC1 represents a network component whose expression is highly sensitive to small perturbations in the function of other networks TFs. We have also found that expression of ROB1 is dependent on both auto-regulation and cooperative interactions with other network TFs. Finally, the heterozygous NDT80 deletion mutant is hyperfilamentous under both biofilm and hyphae-inducing conditions in a TEC1-dependent manner. Taken together, genetic interaction analysis of this network has provided new insights into the functions of individual TFs as well as into the role of the overall network topology in its function.


Assuntos
Biofilmes , Candida albicans/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Haploinsuficiência , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Redes Reguladoras de Genes , Fatores de Transcrição/genética
10.
ACS Infect Dis ; 2(4): 268-280, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-27088128

RESUMO

AR-12/OSU-03012 is an antitumor celecoxib-derivative that has progressed to Phase I clinical trial as an anticancer agent and has activity against a number of infectious agents including fungi, bacteria and viruses. However, the mechanism of these activities has remained unclear. Based on a chemical-genetic profiling approach in yeast, we have found that AR-12 is an ATP-competitive, time-dependent inhibitor of yeast acetyl coenzyme A synthetase. AR-12-treated fungal cells show phenotypes consistent with the genetic reduction of acetyl CoA synthetase activity, including induction of autophagy, decreased histone acetylation, and loss of cellular integrity. In addition, AR-12 is a weak inhibitor of human acetyl CoA synthetase ACCS2. Acetyl CoA synthetase activity is essential in many fungi and parasites. In contrast, acetyl CoA is primarily synthesized by an alternate enzyme, ATP-citrate lyase, in mammalian cells. Taken together, our results indicate that AR-12 is a non-nucleoside acetyl CoA synthetase inhibitor and that acetyl CoA synthetase may be a feasible antifungal drug target.

11.
Eukaryot Cell ; 14(4): 385-95, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681267

RESUMO

The endoplasmic reticulum (ER) responds to errors in protein folding or processing by induction of the unfolded protein response (UPR). During conditions of ER stress, unconventional splicing of an mRNA encoding the UPR-responsive transcription factor occurs at the ER surface, resulting in activation of the UPR. UPR activation is necessary for adaptation to ER stress and for the pathogenic fungus Cryptococcus neoformans is an absolute requirement for temperature adaptation and virulence. In this study, we have determined that C. neoformans has co-opted a conserved PUF RNA binding protein to regulate the posttranscriptional processing of the HXL1 mRNA encoding the UPR transcription factor. PUF elements were identified in both the 5' and 3' untranslated regions of the HXL1 transcript, and both elements bound Puf4. Deletion of PUF4 resulted in delayed unconventional splicing of HXL1 mRNA and delayed induction of Hxl1 target genes. In addition, the HXL1 transcript was stabilized in the absence of Puf4. The puf4Δ mutant exhibited temperature sensitivity but was as virulent as the wild type, despite a reduction in fungal burden in the brains of infected mice. Our results reveal a novel regulatory role in which a PUF protein influences the unconventional splicing of the mRNA encoding the UPR-responsive transcription factor. These data suggest a unique role for a PUF protein in controlling UPR kinetics via the posttranscriptional regulation of the mRNA encoding the UPR transcription factor Hxl1.


Assuntos
Cryptococcus neoformans/genética , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Splicing de RNA , Estabilidade de RNA , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Regiões 3' não Traduzidas , Animais , Cryptococcus neoformans/metabolismo , Estresse do Retículo Endoplasmático , Proteínas Fúngicas/genética , Regulação da Expressão Gênica , Camundongos , Mutação , Dobramento de Proteína , Fatores de Transcrição/genética
12.
Virulence ; 5(2): 351-6, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24253500

RESUMO

In all eukaryotic cells, the ER stress response is pivotal to survival and adaptation under stress conditions. During temperature adaptation in the human fungal pathogen Cryptococcus neoformans, ER stress is engaged transiently. Studies of this response have demonstrated that both the engagement (turning on the response), as well as the resolution (turning off the response) are required for temperature adaptation and, therefore, pathogenesis. In this review, we synthesize our current understanding of ER stress response engagement and resolution in C. neoformans during host temperature adaptation with a focus on the posttranscriptional events that regulate it. Identification of fungal-specific and Cryptococcus-specific elements of the evolutionarily conserved ER stress response pathway could lead to identification of anti-fungal targets in this fundamental stress response.


Assuntos
Cryptococcus neoformans/fisiologia , Cryptococcus neoformans/efeitos da radiação , Retículo Endoplasmático/fisiologia , Estresse Fisiológico , Resposta a Proteínas não Dobradas , Adaptação Fisiológica , Cryptococcus neoformans/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA