Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 699, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755046

RESUMO

The spin physics of perovskite nanocrystals with confined electrons or holes is attracting increasing attention, both for fundamental studies and spintronic applications. Here, stable [Formula: see text] lead halide perovskite nanocrystals embedded in a fluorophosphate glass matrix are studied by time-resolved optical spectroscopy to unravel the coherent spin dynamics of holes and their interaction with nuclear spins of the 207Pb isotope. We demonstrate the spin mode locking effect provided by the synchronization of the Larmor precession of single hole spins in each nanocrystal in the ensemble that are excited periodically by a laser in an external magnetic field. The mode locking is enhanced by nuclei-induced frequency focusing. An ensemble spin dephasing time [Formula: see text] of a nanosecond and a single hole spin coherence time of T2 = 13 ns are measured. The developed theoretical model accounting for the mode locking and nuclear focusing for randomly oriented nanocrystals with perovskite band structure describes the experimental data very well.

2.
Nat Commun ; 13(1): 3062, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654813

RESUMO

The Landé or g-factors of charge carriers are decisive for the spin-dependent phenomena in solids and provide also information about the underlying electronic band structure. We present a comprehensive set of experimental data for values and anisotropies of the electron and hole Landé factors in hybrid organic-inorganic (MAPbI3, MAPb(Br0.5Cl0.5)3, MAPb(Br0.05Cl0.95)3, FAPbBr3, FA0.9Cs0.1PbI2.8Br0.2, MA=methylammonium and FA=formamidinium) and all-inorganic (CsPbBr3) lead halide perovskites, determined by pump-probe Kerr rotation and spin-flip Raman scattering in magnetic fields up to 10 T at cryogenic temperatures. Further, we use first-principles density functional theory (DFT) calculations in combination with tight-binding and k ⋅ p approaches to calculate microscopically the Landé factors. The results demonstrate their universal dependence on the band gap energy across the different perovskite material classes, which can be summarized in a universal semi-phenomenological expression, in good agreement with experiment.

3.
Phys Rev Lett ; 125(15): 157403, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095628

RESUMO

Exciton valley Hall effect is the spatial separation of the valley-tagged excitons by a drag force. Usually, the effect is associated with the anomalous velocity acquired by the particles due to the Berry curvature of the Bloch bands. Here we show that the anomalous velocity plays no role in the exciton valley Hall effect, which is governed by the side-jump and skew scattering. We develop a microscopic theory of the exciton valley Hall effect in the presence of a synthetic electric field and phonon drag and calculate all relevant contributions to the valley Hall current also demonstrating the cancellation of the anomalous velocity. The sensitivity of the effect to the origin of the drag force and to the scattering processes is shown. We extend the drift-diffusion model to account for the valley Hall effect and calculate the exciton density and valley polarization profiles.

4.
J Chem Phys ; 153(3): 034703, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716165

RESUMO

Strong Coulomb interaction in atomically thin transition metal dichalcogenides makes these systems particularly promising for studies of excitonic physics. Of special interest are the manifestations of the charged excitons, also known as trions, in the optical properties of two-dimensional semiconductors. In order to describe the optical response of such a system, the exciton interaction with resident electrons should be explicitly taken into account. In this paper, we demonstrate that this can be done in both the trion (essentially, few-particle) and Fermi-polaron (many-body) approaches, which produce equivalent results, provided that the electron density is sufficiently low and the trion binding energy is much smaller than the exciton one. Here, we consider the oscillator strengths of the optical transitions related to the charged excitons, fine structure of trions, and Zeeman effect, as well as photoluminescence of trions illustrating the applicability of both few-particle and many-body models.

5.
Phys Rev Lett ; 124(16): 166802, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32383933

RESUMO

We study theoretically weak localization of excitons in atomically thin transition metal dichalcogenides. The constructive interference of excitonic de Broglie waves on the trajectories forming closed loops results in a decrease of the exciton diffusion coefficient. We calculate the interference contribution to the diffusion coefficient for the experimentally relevant situation of exciton scattering by acoustic phonons and static disorder. For the acoustic phonon scattering, the quantum interference becomes more and more important with increasing the temperature. Our estimates show that the quantum contribution to the diffusion coefficient is considerable for the state-of-the-art monolayer and bilayer transition metal dichalcogenides.

6.
Phys Rev Lett ; 123(12): 126801, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31633959

RESUMO

We theoretically study Rydberg excitons in one-dimensional chains of traps in Cu_{2}O coupled via the van der Waals interaction. The triplet of optically active p-shell states acts as an effective spin 1, and the interactions between the excitons are strongly spin dependent. We predict that the system has the topological Haldane phase with the diluted antiferromagnetic order, long-range string correlations, and finite excitation gap. We also analyze the effect of the trap geometry and interactions anisotropy on the Rydberg exciton spin states and demonstrate that a rich spin phase diagram can be realized showing high tunability of the Rydberg exciton platform.

7.
Phys Rev Lett ; 123(6): 067401, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31491178

RESUMO

Optical properties of atomically thin transition metal dichalcogenides are controlled by robust excitons characterized by a very large oscillator strengths. Encapsulation of monolayers such as MoSe_{2} in hexagonal boron nitride (hBN) yields narrow optical transitions approaching the homogenous exciton linewidth. We demonstrate that the exciton radiative rate in these van der Waals heterostructures can be tailored by a simple change of the hBN encapsulation layer thickness as a consequence of the Purcell effect. The time-resolved photoluminescence measurements show that the neutral exciton spontaneous emission time can be tuned by one order of magnitude depending on the thickness of the surrounding hBN layers. The inhibition of the radiative recombination can yield spontaneous emission time up to 10 ps. These results are in very good agreement with the calculated recombination rate in the weak exciton-photon coupling regime. The analysis shows that we are also able to observe a sizable enhancement of the exciton radiative decay rate. Understanding the role of these electrodynamical effects allows us to elucidate the complex dynamics of relaxation and recombination for both neutral and charged excitons.

8.
Nat Commun ; 8: 14927, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28367962

RESUMO

Excitons, Coulomb bound electron-hole pairs, are composite bosons and their interactions in traditional semiconductors lead to condensation and light amplification. The much stronger Coulomb interaction in transition metal dichalcogenides such as WSe2 monolayers combined with the presence of the valley degree of freedom is expected to provide new opportunities for controlling excitonic effects. But so far the bosonic character of exciton scattering processes remains largely unexplored in these two-dimensional materials. Here we show that scattering between B-excitons and A-excitons preferably happens within the same valley in momentum space. This leads to power dependent, negative polarization of the hot B-exciton emission. We use a selective upconversion technique for efficient generation of B-excitons in the presence of resonantly excited A-excitons at lower energy; we also observe the excited A-excitons state 2s. Detuning of the continuous wave, low-power laser excitation outside the A-exciton resonance (with a full width at half maximum of 4 meV) results in vanishing upconversion signal.

9.
Phys Rev Lett ; 119(4): 047401, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-29341750

RESUMO

The optical selection rules for interband transitions in WSe_{2}, WS_{2}, and MoSe_{2} transition metal dichalcogenide monolayers are investigated by polarization-resolved photoluminescence experiments with a signal collection from the sample edge. These measurements reveal a strong polarization dependence of the emission lines. We see clear signatures of the emitted light with the electric field oriented perpendicular to the monolayer plane, corresponding to an interband optical transition forbidden at normal incidence used in standard optical spectroscopy measurements. The experimental results are in agreement with the optical selection rules deduced from group theory analysis, highlighting the key role played by the different symmetries of the conduction and valence bands split by the spin-orbit interaction. These studies yield a direct determination of the bright-dark exciton splitting, for which we measure 40±1 meV and 55±2 meV in WSe_{2} and WS_{2} monolayer, respectively.

10.
Phys Rev Lett ; 115(11): 117401, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26406852

RESUMO

The electronic states at the direct band gap of monolayer transition metal dichalcogenides such as WSe_{2} at the K^{+} and K^{-} valleys are related by time reversal and may be viewed as pseudospins. The corresponding optical interband transitions are governed by robust excitons. Excitation with linearly polarized light yields the coherent superposition of exciton pseudospin states, referred to as coherent valley states. Here, we uncover how and why valley coherence can be generated efficiently. In double resonant Raman spectroscopy, we show that the optically generated 2s exciton state differs from the 1s state by exactly the energy of the combination of several prominent phonons. Superimposed on the exciton photoluminescence (PL), we observe the double resonant Raman signal. This spectrally narrow peak shifts with the excitation laser energy as incoming photons match the 2s and outgoing photons the 1s exciton transition. The multiphonon resonance has important consequences: following linearly polarized excitation of the 2s exciton, a superposition of valley states is efficiently transferred from the 2s to 1s state. This explains the high degree of valley coherence measured for the 1s exciton PL.

11.
Phys Rev Lett ; 115(2): 027402, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26207502

RESUMO

The recent observation of dipole-allowed P excitons up to principal quantum numbers of n=25 in cuprous oxide has given insight into exciton states with unprecedented spectral resolution. While so far the exciton description as a hydrogenlike complex has been fully adequate for cubic crystals, we demonstrate here distinct deviations: The breaking of rotational symmetry leads to mixing of high angular momentum F and H excitons with the P excitons so that they can be observed in absorption. The F excitons show a threefold splitting that depends systematically on n, in agreement with theoretical considerations. From detailed comparison of experiment and theory we determine the cubic anisotropy parameter of the Cu(2)O valence band.

12.
Opt Express ; 23(9): 11713-23, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25969262

RESUMO

Spin noise spectroscopy (SNS) is a new method for studying magnetic resonance and spin dynamics that has gained, in the last several years, a considerable popularity. The method is based on measuring magnetization noise of a paramagnet using the Faraday rotation technique. In strong contrast with methods of nonlinear optics, the spectroscopy of spin noise is considered to be essentially nonperturbative. At the same time, presently, it became clear that the SNS, as an optical technique, demonstrates abilities lying far beyond the bounds of conventional linear optics. Specifically, the SNS allows one to penetrate inside an inhomogeneously broadened absorption band and to determine its homogeneous width, to realize a sort of pump-probe spectroscopy without any optical nonlinearity, to probe a bulk inhomogeneous medium by focal point of a probe beam, etc. This may seem especially puzzling when taken into account that SNS can be considered just as a version of Raman spectroscopy, which is known to be deprived of such abilities. Understanding of these paradoxical features of SNS technique is required for the present-day applications of SNS and its further development. In this paper, we present a general analysis of this apparent inconsistency from the viewpoint of distinction between spectroscopy of the light intensity and of the light field and provide its resolution.

13.
Phys Rev Lett ; 112(19): 196403, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24877953

RESUMO

We propose a novel physical mechanism for the creation of long-lived macroscopic exciton-photon qubits in semiconductor microcavities with embedded quantum wells in the strong coupling regime. The polariton qubit is a superposition of lower branch and upper branch exciton-polariton states. We argue that the coherence time of Rabi oscillations can be dramatically enhanced due to their stimulated pumping from a permanent thermal reservoir of polaritons. We discuss applications of such qubits for quantum information processing, cloning, and storage purposes.

14.
Phys Rev Lett ; 111(8): 087603, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-24010477

RESUMO

We report on the nondestructive measurement of nuclear magnetization in n-GaAs via cavity enhanced Faraday rotation. In contrast with the existing optical methods, this detection scheme does not require the presence of detrimental out-of-equilibrium electrons. Specific mechanisms of the Faraday rotation are identified for (i) nuclear spins situated within the localized electron orbits, these spins are characterized by fast dynamics, (ii) all other nuclear spins in the sample characterized by much slower dynamics. Our results suggest that even in degenerate semiconductors nuclear spin relaxation is limited by the presence of localized electron states and spin diffusion, rather than by Korringa mechanism.

15.
Phys Rev Lett ; 110(13): 137402, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581369

RESUMO

The dynamics of the expansion of the first order spatial coherence g(1) for a polariton system in a high-Q GaAs microcavity was investigated on the basis of Young's double slit experiment under 3 ps pulse excitation at the conditions of polariton Bose-Einstein condensation. It was found that in the process of condensate formation the coherence expands with a constant velocity of about 10(8) cm/s. The measured coherence is smaller than that in a thermal equilibrium system during the growth of condensate density and well exceeds it at the end of condensate decay. The onset of spatial coherence is governed by polariton relaxation while condensate amplitude and phase fluctuations are not suppressed.

16.
Phys Rev Lett ; 110(4): 047402, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25166199

RESUMO

We propose a concept of a quantum cascade laser based on transitions of bosonic quasiparticles (excitons) in a parabolic potential trap in a semiconductor microcavity. This laser would emit terahertz radiation due to bosonic stimulation of excitonic transitions. The dynamics of a bosonic cascade is strongly different from the dynamics of a conventional fermionic cascade laser. We show that populations of excitonic ladders are parity dependent and quantized if the laser operates without an external terahertz cavity.

17.
Phys Rev Lett ; 108(19): 197401, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003086

RESUMO

Vertical cavity surface emitting terahertz lasers can be realized in conventional semiconductor microcavities with embedded quantum wells in the strong coupling regime. The cavity is to be pumped optically at half the frequency of the 2p exciton state. Once a threshold population of 2p excitons is achieved, a stimulated terahertz transition populates the lower exciton-polariton branch, and the cavity starts emitting laser light both in the optical and terahertz ranges. The lasing threshold is sensitive to the statistics of photons of the pumping light.


Assuntos
Lasers Semicondutores , Modelos Teóricos , Teoria Quântica , Radiação Terahertz , Termodinâmica
18.
J Phys Condens Matter ; 24(34): 345302, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22871901

RESUMO

A theoretical description of electron spin orientation and detection by short optical pulses is proposed for ensembles of singly charged semiconductor nanocrystals. The complex structure of the valence band in spherical nanocrystals is taken into account. We demonstrate that the direction of electron spin injected by the pump pulse depends on both the pump pulse helicity and the pump pulse power. It is shown that a train of optical pulses can lead to the complete orientation of the resident electron spin. The microscopic theory of the spin Faraday, Kerr and ellipticity effects is developed and the spectral sensitivity of these signals is discussed. We show that under periodic pumping pronounced mode-locking of electron spins takes place and manifests itself as significant spin signals at negative delays between pump and probe pulses.

19.
Phys Rev Lett ; 107(15): 156602, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22107309

RESUMO

We develop a theory of spin noise in semiconductor nanowires considered as prospective elements for spintronics. In these structures, spin-orbit coupling can be realized as a random function of a coordinate correlated on a spatial scale of the order of 10 nm. By analyzing different regimes of electron transport and spin dynamics, we demonstrate that the spin relaxation can be very slow, and the resulting noise power spectrum increases algebraically as the frequency goes to zero. This effect makes spin phenomena in nanowires best suitable for studies by rapidly developing spin-noise spectroscopy.

20.
Phys Rev Lett ; 107(16): 166604, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22107413

RESUMO

In photoluminescence spectra of symmetric [111] grown GaAs/AlGaAs quantum dots in longitudinal magnetic fields applied along the growth axis, we observe in addition to the expected bright states also nominally dark transitions for both charged and neutral excitons. We uncover a strongly nonmonotonic, sign-changing field dependence of the bright neutral exciton splitting resulting from the interplay between exchange and Zeeman effects. Our theory shows quantitatively that these surprising experimental results are due to magnetic-field-induced ±3/2 heavy-hole mixing, an inherent property of systems with C(3v) point-group symmetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA