Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 30(Pt 3): 538-545, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37042663

RESUMO

Recent advances in automation have fostered the development of unattended data collection services at a handful of synchrotron facilities worldwide. At the Swiss Light Source, the installation of new high-throughput sample changers at all three macromolecular crystallography beamlines and the commissioning of the Fast Fragment and Compound Screening pipeline created a unique opportunity to automate data acquisition. Here, the DA+ microservice software stack upgrades, implementation of an automatic loop-centering service and deployment of the Smart Digital User (SDU) software for unattended data collection are reported. The SDU software is the decision-making software responsible for communications between services, sample and device safety, sample centering, sample alignment with grid based X-ray diffraction and, finally, data collection.

2.
J Synchrotron Radiat ; 27(Pt 3): 860-863, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381791

RESUMO

In this paper, the design and functionalities of the high-throughput TELL sample exchange system for macromolecular crystallography is presented. TELL was developed at the Paul Scherrer Institute with a focus on speed, storage capacity and reliability to serve the three macromolecular crystallography beamlines of the Swiss Light Source, as well as the SwissMX instrument at SwissFEL.


Assuntos
Cristalografia por Raios X/instrumentação , Substâncias Macromoleculares/química , Desenho de Equipamento , Reprodutibilidade dos Testes , Robótica/instrumentação , Síncrotrons/instrumentação
3.
J Synchrotron Radiat ; 22(4): 895-900, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26134792

RESUMO

The Parallel Robotics Inspired Goniometer (PRIGo) is a novel compact and high-precision goniometer providing an alternative to (mini-)kappa, traditional three-circle goniometers and Eulerian cradles used for sample reorientation in macromolecular crystallography. Based on a combination of serial and parallel kinematics, PRIGo emulates an arc. It is mounted on an air-bearing stage for rotation around ω and consists of four linear positioners working synchronously to achieve x, y, z translations and χ rotation (0-90°), followed by a ϕ stage (0-360°) for rotation around the sample holder axis. Owing to the use of piezo linear positioners and active correction, PRIGo features spheres of confusion of <1 µm, <7 µm and <10 µm for ω, χ and ϕ, respectively, and is therefore very well suited for micro-crystallography. PRIGo enables optimal strategies for both native and experimental phasing crystallographic data collection. Herein, PRIGo hardware and software, its calibration, as well as applications in macromolecular crystallography are described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA