Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Magn Reson Med ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730562

RESUMO

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.

2.
Radiother Oncol ; 191: 110064, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135187

RESUMO

BACKGROUND AND PURPOSE: Radiation dose escalation may improve local control (LC) and overall survival (OS) in select pancreatic ductal adenocarcinoma (PDAC) patients. We prospectively evaluated the safety and efficacy of ablative stereotactic magnetic resonance (MR)-guided adaptive radiation therapy (SMART) for borderline resectable (BRPC) and locally advanced pancreas cancer (LAPC). The primary endpoint of acute grade ≥ 3 gastrointestinal (GI) toxicity definitely related to SMART was previously published with median follow-up (FU) 8.8 months from SMART. We now present more mature outcomes including OS and late toxicity. MATERIALS AND METHODS: This prospective, multi-center, single-arm open-label phase 2 trial (NCT03621644) enrolled 136 patients (LAPC 56.6 %; BRPC 43.4 %) after ≥ 3 months of any chemotherapy without distant progression and CA19-9 ≤ 500 U/mL. SMART was delivered on a 0.35 T MR-guided system prescribed to 50 Gy in 5 fractions (biologically effective dose10 [BED10] = 100 Gy). Elective coverage was optional. Surgery and chemotherapy were permitted after SMART. RESULTS: Mean age was 65.7 years (range, 36-85), induction FOLFIRINOX was common (81.7 %), most received elective coverage (57.4 %), and 34.6 % had surgery after SMART. Median FU was 22.9 months from diagnosis and 14.2 months from SMART, respectively. 2-year OS from diagnosis and SMART were 53.6 % and 40.5 %, respectively. Late grade ≥ 3 toxicity definitely, probably, or possibly attributed to SMART were observed in 0 %, 4.6 %, and 11.5 % patients, respectively. CONCLUSIONS: Long-term outcomes from the phase 2 SMART trial demonstrate encouraging OS and limited severe toxicity. Additional prospective evaluation of this novel strategy is warranted.


Assuntos
Neoplasias Pancreáticas , Radiocirurgia , Humanos , Idoso , Neoplasias Pancreáticas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Planejamento da Radioterapia Assistida por Computador , Radiocirurgia/efeitos adversos
3.
Int J Radiat Oncol Biol Phys ; 117(4): 799-808, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37210048

RESUMO

PURPOSE: Magnetic resonance (MR) image guidance may facilitate safe ultrahypofractionated radiation dose escalation for inoperable pancreatic ductal adenocarcinoma. We conducted a prospective study evaluating the safety of 5-fraction Stereotactic MR-guided on-table Adaptive Radiation Therapy (SMART) for locally advanced (LAPC) and borderline resectable pancreatic cancer (BRPC). METHODS AND MATERIALS: Patients with LAPC or BRPC were eligible for this multi-institutional, single-arm, phase 2 trial after ≥3 months of systemic therapy without evidence of distant progression. Fifty gray in 5 fractions was prescribed on a 0.35T MR-guided radiation delivery system. The primary endpoint was acute grade ≥3 gastrointestinal (GI) toxicity definitely attributed to SMART. RESULTS: One hundred thirty-six patients (LAPC 56.6%, BRPC 43.4%) were enrolled between January 2019 and January 2022. Mean age was 65.7 (36-85) years. Head of pancreas lesions were most common (66.9%). Induction chemotherapy mostly consisted of (modified)FOLFIRINOX (65.4%) or gemcitabine/nab-paclitaxel (16.9%). Mean CA19-9 after induction chemotherapy and before SMART was 71.7 U/mL (0-468). On-table adaptive replanning was performed for 93.1% of all delivered fractions. Median follow-up from diagnosis and SMART was 16.4 and 8.8 months, respectively. The incidence of acute grade ≥3 GI toxicity possibly or probably attributed to SMART was 8.8%, including 2 postoperative deaths that were possibly related to SMART in patients who had surgery. There was no acute grade ≥3 GI toxicity definitely related to SMART. One-year overall survival from SMART was 65.0%. CONCLUSIONS: The primary endpoint of this study was met with no acute grade ≥3 GI toxicity definitely attributed to ablative 5-fraction SMART. Although it is unclear whether SMART contributed to postoperative toxicity, we recommend caution when pursuing surgery, especially with vascular resection after SMART. Additional follow-up is ongoing to evaluate late toxicity, quality of life, and long-term efficacy.


Assuntos
Neoplasias Pancreáticas , Radiocirurgia , Humanos , Idoso , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estudos Prospectivos , Planejamento da Radioterapia Assistida por Computador , Qualidade de Vida , Pâncreas , Espectroscopia de Ressonância Magnética , Radiocirurgia/métodos , Neoplasias Pancreáticas
4.
Med Phys ; 50(8): 5273-5293, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36710376

RESUMO

Magnetic resonance imaging (MRI) has become an important imaging modality in the field of radiotherapy (RT) in the past decade, especially with the development of various novel MRI and image-guidance techniques. In this review article, we will describe recent developments and discuss the applications of multi-parametric MRI (mpMRI) in RT simulation. In this review, mpMRI refers to a general and loose definition which includes various multi-contrast MRI techniques. Specifically, we will focus on the implementation, challenges, and future directions of mpMRI techniques for RT simulation.


Assuntos
Imageamento por Ressonância Magnética , Radioterapia , Imageamento por Ressonância Magnética/métodos
5.
Cureus ; 15(12): e50459, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38222202

RESUMO

For MR-guided radiation therapy treatment planning, an MRI and CT of the intended treatment site are typically acquired. Patients' prior treatments or procedures can cause image artifacts in one or both scans, which may impact treatment planning or the radiation dose calculation. In this case report, a patient with several previous transcatheter arterial chemoembolization (TACE) procedures was planned for radiation therapy on a low-field MR-linac, and the impact of residual iodinated oil on the radiation dose calculation and MR-guided adaptive workflow was evaluated.

6.
IEEE Trans Radiat Plasma Med Sci ; 6(2): 158-181, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35992632

RESUMO

Artificial intelligence (AI) has great potential to transform the clinical workflow of radiotherapy. Since the introduction of deep neural networks, many AI-based methods have been proposed to address challenges in different aspects of radiotherapy. Commercial vendors have started to release AI-based tools that can be readily integrated to the established clinical workflow. To show the recent progress in AI-aided radiotherapy, we have reviewed AI-based studies in five major aspects of radiotherapy including image reconstruction, image registration, image segmentation, image synthesis, and automatic treatment planning. In each section, we summarized and categorized the recently published methods, followed by a discussion of the challenges, concerns, and future development. Given the rapid development of AI-aided radiotherapy, the efficiency and effectiveness of radiotherapy in the future could be substantially improved through intelligent automation of various aspects of radiotherapy.

7.
Magn Reson Med ; 88(2): 840-848, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35403235

RESUMO

PURPOSE: To reduce scan time, methods to accelerate phase-encoded/non-Cartesian MR fingerprinting (MRF) acquisitions for variable density spiral acquisitions have recently been developed. These methods are not applicable to MRF acquisitions, wherein a single k-space spoke is acquired per frame. Therefore, we propose a low-rank inversion method to resolve MRF contrast dynamics from through-plane accelerated Cartesian/radial measurements applied to quantitative relaxation-time mapping on a 0.35T system. METHODS: An algorithm was implemented to reconstruct through-plane aliased low-rank images describing the contrast dynamics occurring because of the transient-state MRF acquisition. T1 and T2 times from accelerated acquisitions were compared with those from unaccelerated linear reconstructions in a standardized system phantom and within in vivo brain and prostate experiments on a hybrid 0.35T MRI/linear accelerator. RESULTS: No significant differences between T1 and T2 times for the accelerated reconstructions were observed compared to fully sampled acquisitions (p = 0.41 and p = 0.36, respectively). The mean absolute errors in T1 and T2 were 5.6% and 2.9%, respectively, between the full and accelerated acquisitions. The SDs in T1 and T2 decreased with the advanced accelerated reconstruction compared with the unaccelerated reconstruction (p = 0.02 and p = 0.03, respectively). The quality of the T1 and T2 maps generated with the proposed approach are comparable to those obtained using the unaccelerated data sets. CONCLUSIONS: Through-plane accelerated MRF with radial k-space coverage was demonstrated at a low field strength of 0.35 T. This method enabled 3D T1 and T2 mapping at 0.35 T with a 3-min scan.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Imagens de Fantasmas
8.
Adv Radiat Oncol ; 7(3): 100876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35243181

RESUMO

PURPOSE: Whole-heart dose metrics are not as strongly linked to late cardiac morbidities as radiation doses to individual cardiac substructures. Our aim was to characterize the excursion and dosimetric variation throughout respiration of sensitive cardiac substructures for future robust safety margin design. METHODS AND MATERIALS: Eleven patients with cancer treatments in the thorax underwent 4-phase noncontrast 4-dimensional computed tomography (4DCT) with T2-weighted magnetic resonance imaging in end-exhale. The end-exhale phase of the 4DCT was rigidly registered with the magnetic resonance imaging and refined with an assisted alignment surrounding the heart from which 13 substructures (chambers, great vessels, coronary arteries, etc) were contoured by a radiation oncologist on the 4DCT. Contours were deformed to the other respiratory phases via an intensity-based deformable registration for radiation oncologist verification. Measurements of centroid and volume were evaluated between phases. Mean and maximum dose to substructures were evaluated across respiratory phases for the breast (n = 8) and thoracic cancer (n = 3) cohorts. RESULTS: Paired t tests revealed reasonable maintenance of geometric and anatomic properties (P < .05 for 4/39 volume comparisons). Maximum displacements >5 mm were found for 24.8%, 8.5%, and 64.5% of the cases in the left-right, anterior-posterior, and superior-inferior axes, respectively. Vector displacements were largest for the inferior vena cava and the right coronary artery, with displacements up to 17.9 mm. In breast, the left anterior descending artery Dmean varied 3.03 ± 1.75 Gy (range, 0.53-5.18 Gy) throughout respiration whereas lung showed patient-specific results. Across all patients, whole heart metrics were insensitive to breathing phase (mean and maximum dose variations <0.5 Gy). CONCLUSIONS: This study characterized the intrafraction displacement of the cardiac substructures through the respiratory cycle and highlighted their increased dosimetric sensitivity to local dose changes not captured by whole heart metrics. Results suggest value of cardiac substructure margin generation to enable more robust cardiac sparing and to reduce the effect of respiration on overall treatment plan quality.

9.
Adv Radiat Oncol ; 7(3): 100889, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198838

RESUMO

PURPOSE: Patient tolerability of magnetic resonance (MR)-guided radiation treatment delivery is limited by the need for repeated deep inspiratory breath holds (DIBHs). This volunteer study assessed the feasibility of continuous positive airway pressure (CPAP) with and without DIBH for respiratory motion management during radiation treatment with an MR-linear accelerator (MR-linac). METHODS AND MATERIALS: MR imaging safety was first addressed by placing the CPAP device in an MR-safe closet and configuring a tube circuit via waveguide to the magnet bore. Reproducibility and linearity of the final configuration were assessed. Six healthy volunteers underwent thoracic imaging in a 0.35T MR-linac, with one free breathing (FB) and 2 DIBH acquisitions being obtained at 5 pressures from 0 to 15 cm-H2O. Lung and heart volumes and positions were recorded; repeatability was assessed by comparing 2 consecutive DIBH scans. Blinded reviewers graded images for motion artifact using a 3-point grading scale. Participants completed comfort and perception surveys before and after imaging sessions. RESULTS: Compared with FB alone, FB-10, FB-12, and FB-15 cm H2O significantly increased lung volumes (+23%, +34%, +44%; all P <.05) and inferiorly displaced the heart (0.86 cm, 0.96 cm, 1.18 cm; all P < . 05). Lung volumes were significantly greater with DIBH-0 cm H2O compared with FB-15 cm H2O (+105% vs +44%, P = .01), and DIBH-15 cm H2O yielded additional volume increase (+131% vs +105%, P = .01). Adding CPAP to DIBH decreased lung volume differences between consecutive breath holds (correlation coefficient 0.97 at 15 cm H2O vs 0.00 at 0 cm H2O). The addition of 15 cm H2O CPAP reduced artifact scores (P = .03) compared with FB; all DIBH images (0-15 cm H2O) had less artifact (P < .01). CONCLUSIONS: This work demonstrates the feasibility of integrating CPAP in an MR-linac environment in healthy volunteers. Extending this work to a larger patient cohort is warranted to further establish the role of CPAP as an alternative and concurrent approach to DIBH in MR-guided radiation therapy.

10.
CA Cancer J Clin ; 72(1): 34-56, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792808

RESUMO

Radiation therapy (RT) continues to play an important role in the treatment of cancer. Adaptive RT (ART) is a novel method through which RT treatments are evolving. With the ART approach, computed tomography or magnetic resonance (MR) images are obtained as part of the treatment delivery process. This enables the adaptation of the irradiated volume to account for changes in organ and/or tumor position, movement, size, or shape that may occur over the course of treatment. The advantages and challenges of ART maybe somewhat abstract to oncologists and clinicians outside of the specialty of radiation oncology. ART is positioned to affect many different types of cancer. There is a wide spectrum of hypothesized benefits, from small toxicity improvements to meaningful gains in overall survival. The use and application of this novel technology should be understood by the oncologic community at large, such that it can be appropriately contextualized within the landscape of cancer therapies. Likewise, the need to test these advances is pressing. MR-guided ART (MRgART) is an emerging, extended modality of ART that expands upon and further advances the capabilities of ART. MRgART presents unique opportunities to iteratively improve adaptive image guidance. However, although the MRgART adaptive process advances ART to previously unattained levels, it can be more expensive, time-consuming, and complex. In this review, the authors present an overview for clinicians describing the process of ART and specifically MRgART.


Assuntos
Imagem por Ressonância Magnética Intervencionista/métodos , Neoplasias/radioterapia , Aceleradores de Partículas , Radioterapia (Especialidade)/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , História do Século XX , História do Século XXI , Humanos , Imagem por Ressonância Magnética Intervencionista/história , Imagem por Ressonância Magnética Intervencionista/instrumentação , Imagem por Ressonância Magnética Intervencionista/tendências , Neoplasias/diagnóstico por imagem , Radioterapia (Especialidade)/história , Radioterapia (Especialidade)/instrumentação , Radioterapia (Especialidade)/tendências , Planejamento da Radioterapia Assistida por Computador/história , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/tendências
11.
Int J Radiat Oncol Biol Phys ; 112(2): 417-425, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509552

RESUMO

PURPOSE: Radiation therapy (RT) can increase the risk of cardiac events in patients with breast cancer (BC), but biomarkers predicting risk for developing RT-induced cardiac disease are currently lacking. We report results from a prospective clinical trial evaluating early magnetic resonance imaging (MRI) and serum biomarker changes as predictors of cardiac injury and risk of subsequent cardiac events after RT for left-sided disease. METHODS: Women with node-negative and node-positive (N-/+) left-sided BC were enrolled on 2 institutional review board (IRB)-approved protocols at 2 institutions. MRI was conducted pretreatment (within 1 week of starting radiation), at the end of treatment (last day of treatment ±1 week), and 3 months after the last day of treatment (±2 weeks) to quantify left and right ventricular volumes and function, myocardial fibrosis, and edema. Perfusion changes during regadenoson stress perfusion were also assessed on a subset of patients (n = 28). Serum was collected at the same time points. Whole heart and cardiac substructures were contoured using CT and MRI. Models were constructed using baseline cardiac and clinical risk factors. Associations between MRI-measured changes and dose were evaluated. RESULTS: Among 51 women enrolled, mean heart dose ranged from 0.80 to 4.7 Gy and mean left ventricular (LV) dose from 1.1 to 8.2 Gy, with mean heart dose 2.0 Gy. T1 time, a marker of fibrosis, and right ventricular (RV) ejection fraction (EF) significantly changed with treatment; these were not dose dependent. T2 (marker of edema) and LV EF did not significantly change. No risk factors were associated with baseline global perfusion. Prior receipt of doxorubicin was marginally associated with decreased myocardial perfusion after RT (P = .059), and mean MHD was not associated with perfusion changes. A significant correlation between baseline IL-6 and mean heart dose (MHD) at the end of RT (ρ 0.44, P = .007) and a strong trend between troponin I and MHD at 3 months post-treatment (ρ 0.33, P = .07) were observed. No other significant correlations were identified. CONCLUSIONS: In this prospective study of women with left-sided breast cancer treated with contemporary treatment planning, cardiac radiation doses were very low relative to historical doses reported by Darby et al. Although we observed significant changes in T1 and RV EF shortly after RT, these changes were not correlated with whole heart or substructure doses. Serum biomarker analysis of cardiac injury demonstrates an interesting trend between markers and MHD that warrants further investigation.


Assuntos
Neoplasias da Mama , Cardiotoxicidade , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Cardiotoxicidade/diagnóstico por imagem , Cardiotoxicidade/etiologia , Feminino , Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Estudos Prospectivos
12.
Med Phys ; 48(11): 6930-6940, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34487357

RESUMO

PURPOSE: The acquisition of multiparametric quantitative magnetic resonance imaging (qMRI) is becoming increasingly important for functional characterization of cancer prior to- and throughout the course of radiation therapy. The feasibility of a qMRI method known as magnetic resonance fingerprinting (MRF) for rapid T1 and T2 mapping was assessed on a low-field MR-linac system. METHODS: A three-dimensional MRF sequence was implemented on a 0.35T MR-guided radiotherapy system. MRF-derived measurements of T1 and T2 were compared to those obtained with gold standard single spin echo methods, and the impacts of the radiofrequency field homogeneity and scan times ranging between 6 and 48 min were analyzed by acquiring between 1 and 8 spokes per time point in a standard quantitative system phantom. The short-term repeatability of MRF was assessed over three measurements taken over a 10-h period. To evaluate transferability, MRF measurements were acquired on two additional MR-guided radiotherapy systems. Preliminary human volunteer studies were performed. RESULTS: The phantom benchmarking studies showed that MRF is capable of mapping T1 and T2 values within 8% and 10% of gold standard measures, respectively, at 0.35T. The coefficient of variation of T1 and T2 estimates over three repeated scans was < 5% over a broad range of relaxation times. The T1 and T2 times derived using a single-spoke MRF acquisition across three scanners were near unity and mean percent errors in T1 and T2 estimates using the same phantom were < 3%. The mean percent differences in T1 and T2 as a result of truncating the scan time to 6 min over the large range of relaxation times in the system phantom were 0.65% and 4.05%, respectively. CONCLUSIONS: The technical feasibility and accuracy of MRF on a low-field MR-guided radiation therapy device has been demonstrated. MRF can be used to measure accurate T1 and T2 maps in three dimensions from a brief 6-min scan, offering strong potential for efficient and reproducible qMRI for future clinical trials in functional plan adaptation and tumor/normal tissue response assessment.


Assuntos
Benchmarking , Imageamento por Ressonância Magnética , Encéfalo , Humanos , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas
13.
Phys Imaging Radiat Oncol ; 18: 34-40, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34258405

RESUMO

PURPOSE: Emerging evidence suggests cardiac substructures are highly radiosensitive during radiation therapy for cancer treatment. However, variability in substructure position after tumor localization has not been well characterized. This study quantifies inter-fraction displacement and planning organ at risk volumes (PRVs) of substructures by leveraging the excellent soft tissue contrast of magnetic resonance imaging (MRI). METHODS: Eighteen retrospectively evaluated patients underwent radiotherapy for intrathoracic tumors with a 0.35 T MRI-guided linear accelerator. Imaging was acquired at a 17-25 s breath-hold (resolution 1.5 × 1.5 × 3 mm3). Three to four daily MRIs per patient (n = 71) were rigidly registered to the planning MRI-simulation based on tumor matching. Deep learning or atlas-based segmentation propagated 13 substructures (e.g., chambers, coronary arteries, great vessels) to daily MRIs and were verified by two radiation oncologists. Daily centroid displacements from MRI-simulation were quantified and PRVs were calculated. RESULTS: Across substructures, inter-fraction displacements for 14% in the left-right, 18% in the anterior-posterior, and 21% of fractions in the superior-inferior were > 5 mm. Due to lack of breath-hold compliance, ~4% of all structures shifted > 10 mm in any axis. For the chambers, median displacements were 1.8, 1.9, and 2.2 mm in the left-right, anterior-posterior, and superior-inferior axis, respectively. Great vessels demonstrated larger displacements (> 3 mm) in the superior-inferior axis (43% of shifts) and were only 25% (left-right) and 29% (anterior-posterior) elsewhere. PRVs from 3 to 5 mm were determined as anisotropic substructure-specific margins. CONCLUSIONS: This exploratory work derived substructure-specific safety margins to ensure highly effective cardiac sparing. Findings require validation in a larger cohort for robust margin derivation and for applications in prospective clinical trials.

14.
Med Phys ; 48(8): 4523-4531, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34231224

RESUMO

The past decade has seen the increasing integration of magnetic resonance (MR) imaging into radiation therapy (RT). This growth can be contributed to multiple factors, including hardware and software advances that have allowed the acquisition of high-resolution volumetric data of RT patients in their treatment position (also known as MR simulation) and the development of methods to image and quantify tissue function and response to therapy. More recently, the advent of MR-guided radiation therapy (MRgRT) - achieved through the integration of MR imaging systems and linear accelerators - has further accelerated this trend. As MR imaging in RT techniques and technologies, such as MRgRT, gain regulatory approval worldwide, these systems will begin to propagate beyond tertiary care academic medical centers and into more community-based health systems and hospitals, creating new opportunities to provide advanced treatment options to a broader patient population. Accompanying these opportunities are unique challenges related to their adaptation, adoption, and use including modification of hardware and software to meet the unique and distinct demands of MR imaging in RT, the need for standardization of imaging techniques and protocols, education of the broader RT community (particularly in regards to MR safety) as well as the need to continue and support research, and development in this space. In response to this, an ad hoc committee of the American Association of Physicists in Medicine (AAPM) was formed to identify the unmet needs, roadblocks, and opportunities within this space. The purpose of this document is to report on the major findings and recommendations identified. Importantly, the provided recommendations represent the consensus opinions of the committee's membership, which were submitted in the committee's report to the AAPM Board of Directors. In addition, AAPM ad hoc committee reports differ from AAPM task group reports in that ad hoc committee reports are neither reviewed nor ultimately approved by the committee's parent groups, including at the council and executive committee level. Thus, the recommendations given in this summary should not be construed as being endorsed by or official recommendations from the AAPM.


Assuntos
Imageamento por Ressonância Magnética , Radioterapia Guiada por Imagem , Humanos , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estados Unidos
15.
Med Phys ; 48(7): e636-e670, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33386620

RESUMO

The use of dedicated magnetic resonance simulation (MR-SIM) platforms in Radiation Oncology has expanded rapidly, introducing new equipment and functionality with the overall goal of improving the accuracy of radiation treatment planning. However, this emerging technology presents a new set of challenges that need to be addressed for safe and effective MR-SIM implementation. The major objectives of this report are to provide recommendations for commercially available MR simulators, including initial equipment selection, siting, acceptance testing, quality assurance, optimization of dedicated radiation therapy specific MR-SIM workflows, patient-specific considerations, safety, and staffing. Major contributions include guidance on motion and distortion management as well as MRI coil configurations to accommodate patients immobilized in the treatment position. Examples of optimized protocols and checklists for QA programs are provided. While the recommendations provided here are minimum requirements, emerging areas and unmet needs are also highlighted for future development.


Assuntos
Radioterapia (Especialidade) , Radioterapia Guiada por Imagem , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador
16.
Int J Radiat Oncol Biol Phys ; 109(4): 1054-1075, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33470210

RESUMO

The integration of adaptive radiation therapy (ART), or modifying the treatment plan during the treatment course, is becoming more widely available in clinical practice. ART offers strong potential for minimizing treatment-related toxicity while escalating or de-escalating target doses based on the dose to organs at risk. Yet, ART workflows add complexity into the radiation therapy planning and delivery process that may introduce additional uncertainties. This work sought to review presently available ART workflows and technological considerations such as image quality, deformable image registration, and dose accumulation. Quality assurance considerations for ART components and minimum recommendations are described. Personnel and workflow efficiency recommendations are provided, as is a summary of currently available clinical evidence supporting the implementation of ART. Finally, to guide future clinical trial protocols, an example ART physician directive and a physics template following standard NRG Oncology protocol is provided.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Braquiterapia , Ensaios Clínicos como Assunto , Humanos , Órgãos em Risco , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem , Tomografia Computadorizada por Raios X , Fluxo de Trabalho
17.
J Appl Clin Med Phys ; 21(11): 195-204, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33073454

RESUMO

PURPOSE: Rising evidence suggests that cardiac substructures are highly radiosensitive. However, they are not routinely considered in treatment planning as they are not readily visualized on treatment planning CTs (TPCTs). This work integrated the soft tissue contrast provided by low-field MRIs acquired on an MR-linac via image registration to further enable cardiac substructure sparing on TPCTs. METHODS: Sixteen upper thoracic patients treated at various breathing states (7 end-exhalation, 7 end-inhalation, 2 free-breathing) on a 0.35T MR-linac were retrospectively evaluated. A hybrid MR/CT atlas and a deep learning three-dimensional (3D) U-Net propagated 13 substructures to TPCTs. Radiation oncologists revised contours using registered MRIs. Clinical treatment plans were re-optimized and evaluated for beam arrangement modifications to reduce substructure doses. Dosimetric assessment included mean and maximum (0.03cc) dose, left ventricular volume receiving 5Gy (LV-V5), and other clinical endpoints. As metrics of plan complexity, total MU and treatment time were evaluated between approaches. RESULTS: Cardiac sparing plans reduced the mean heart dose (mean reduction 0.7 ± 0.6, range 0.1 to 2.5 Gy). Re-optimized plans reduced left anterior descending artery (LADA) mean and LADA0.03cc (0.0-63.9% and 0.0 to 17.3 Gy, respectively). LV0.03cc was reduced by >1.5 Gy for 10 patients while 6 cases had large reductions (>7%) in LV-V5. Left atrial mean dose was equivalent/reduced in all sparing plans (mean reduction 0.9 ± 1.2 Gy). The left main coronary artery was better spared in all cases for mean dose and D0.03cc . One patient exhibited >10 Gy reduction in D0.03cc to four substructures. There was no statistical difference in treatment time and MU, or clinical endpoints to the planning target volume, lung, esophagus, or spinal cord after re-optimization. Four patients benefited from new beam arrangements, leading to further dose reductions. CONCLUSIONS: By introducing 0.35T MRIs acquired on an MR-linac to verify cardiac substructure segmentations for CT-based treatment planning, an opportunity was presented for more effective sparing with limited increase in plan complexity. Validation in a larger cohort with appropriate margins offers potential to reduce radiation-related cardiotoxicities.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Coração/diagnóstico por imagem , Humanos , Órgãos em Risco , Dosagem Radioterapêutica , Estudos Retrospectivos
18.
Med Phys ; 47(9): 4064-4076, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32434276

RESUMO

PURPOSE: Magnetic resonance-guided radiation therapy (MRgRT) has shown great promise for localization and real-time tumor monitoring. However, to date, quantitative imaging has been limited for low field MRgRT. This work benchmarks quantitative T1, R2*, and Proton Density (PD)mapping in a phantom on a 0.35 T MR-linac and implements a novel acquisition method, STrategically Acquired Gradient Echo (STAGE). To further validate STAGE in a clinical setting, a pilot study was undertaken in a cohort of brain tumor patients to elucidate opportunities for longitudinal functional imaging with an MR-linac in the brain. METHODS: STAGE (two triple-echo gradient echo (GRE) acquisitions) was optimized for a 0.35T low-field MR-linac. Simulations were performed to choose two flip angles to optimize signal-to-noise ratio (SNR) and T1-mapping precision. Tradeoffs between SNR, scan time, and spatial resolution for whole-brain coverage were evaluated in healthy volunteers. Data were inputted into a STAGE processing pipeline to yield four qualitative images (T1-weighted, enhanced T1-weighted, proton-density (PD) weighted, and simulated FLuid-Attenuated Inversion Recovery (sFLAIR)), and three quantitative datasets (T1, PD, and R2*). A benchmarking ISMRM/NIST phantom consisting of vials with variable NiCl2 and MnCl2 concentrations was scanned using variable flip angles (VFA) (2-60 degrees) and inversion recovery (IR) methods at 0.35 T. STAGE and VFA T1 values of vials were compared to IR T1 values. As measures of agreement with reference values and repeatability, relative error (RE) and coefficient of variability (CV) were calculated, respectively, for quantitative MR values within the phantom vials (spheres). To demonstrate feasibility, longitudinal STAGE data (pretreatment, weekly, and ~ 2 months post-treatment) were acquired in an IRB-approved pilot study of brain tumor cases via the generation of temporal and differential quantitative MRI maps. RESULTS: In the phantom, RE of measured VFA T1 and STAGE relative to IR reference values were 7.0 ± 2.5% and 9.5 ± 2.2% respectively. RE for the PD vials was 8.1 ± 6.8% and CV for phantom R2* measurements was 10.1 ± 9.9%. Simulations and volunteer experiments yielded final STAGE parameters of FA = 50°/10°, 1 × 1 × 3 mm3 resolution, TR = 40 ms, TE = 5/20/34 ms in 10 min (64 slices). In the pilot study of brain tumor patients, differential maps for R2* and T1 maps were sensitive to local tumor changes and appeared similar to 3 T follow-up MRI datasets. CONCLUSION: Quantitative T1, R2*, and PD mapping are promising at 0.35 T agreeing well with reference data. STAGE phantom data offer quantitative representations comparable to traditional methods in a fraction of the acquisition time. Initial feasibility of implementing STAGE at 0.35 T in a patient brain tumor cohort suggests that detectable changes can be observed over time. With confirmation in a larger cohort, results may be implemented to identify areas of recurrence and facilitate adaptive radiation therapy.


Assuntos
Imageamento por Ressonância Magnética , Recidiva Local de Neoplasia , Encéfalo/diagnóstico por imagem , Humanos , Neuroimagem , Imagens de Fantasmas , Projetos Piloto , Reprodutibilidade dos Testes
19.
Artigo em Inglês | MEDLINE | ID: mdl-34094039

RESUMO

Recently, interest in MR-only treatment planning using synthetic CTs (synCTs) has grown rapidly in radiation therapy. However, developing class solutions for medical images that contain atypical anatomy remains a major limitation. In this paper, we propose a novel spatial attention-guided generative adversarial network (attention-GAN) model to generate accurate synCTs using T1-weighted MRI images as the input to address atypical anatomy. Experimental results on fifteen brain cancer patients show that attention-GAN outperformed existing synCT models and achieved an average MAE of 85.223±12.08, 232.41±60.86, 246.38±42.67 Hounsfield units between synCT and CT-SIM across the entire head, bone and air regions, respectively. Qualitative analysis shows that attention-GAN has the ability to use spatially focused areas to better handle outliers, areas with complex anatomy or post-surgical regions, and thus offer strong potential for supporting near real-time MR-only treatment planning.

20.
Med Phys ; 47(2): 576-586, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31794054

RESUMO

PURPOSE: Radiation dose to cardiac substructures is related to radiation-induced heart disease. However, substructures are not considered in radiation therapy planning (RTP) due to poor visualization on CT. Therefore, we developed a novel deep learning (DL) pipeline leveraging MRI's soft tissue contrast coupled with CT for state-of-the-art cardiac substructure segmentation requiring a single, non-contrast CT input. MATERIALS/METHODS: Thirty-two left-sided whole-breast cancer patients underwent cardiac T2 MRI and CT-simulation. A rigid cardiac-confined MR/CT registration enabled ground truth delineations of 12 substructures (chambers, great vessels (GVs), coronary arteries (CAs), etc.). Paired MRI/CT data (25 patients) were placed into separate image channels to train a three-dimensional (3D) neural network using the entire 3D image. Deep supervision and a Dice-weighted multi-class loss function were applied. Results were assessed pre/post augmentation and post-processing (3D conditional random field (CRF)). Results for 11 test CTs (seven unique patients) were compared to ground truth and a multi-atlas method (MA) via Dice similarity coefficient (DSC), mean distance to agreement (MDA), and Wilcoxon signed-ranks tests. Three physicians evaluated clinical acceptance via consensus scoring (5-point scale). RESULTS: The model stabilized in ~19 h (200 epochs, training error <0.001). Augmentation and CRF increased DSC 5.0 ± 7.9% and 1.2 ± 2.5%, across substructures, respectively. DL provided accurate segmentations for chambers (DSC = 0.88 ± 0.03), GVs (DSC = 0.85 ± 0.03), and pulmonary veins (DSC = 0.77 ± 0.04). Combined DSC for CAs was 0.50 ± 0.14. MDA across substructures was <2.0 mm (GV MDA = 1.24 ± 0.31 mm). No substructures had statistical volume differences (P > 0.05) to ground truth. In four cases, DL yielded left main CA contours, whereas MA segmentation failed, and provided improved consensus scores in 44/60 comparisons to MA. DL provided clinically acceptable segmentations for all graded patients for 3/4 chambers. DL contour generation took ~14 s per patient. CONCLUSIONS: These promising results suggest DL poses major efficiency and accuracy gains for cardiac substructure segmentation offering high potential for rapid implementation into RTP for improved cardiac sparing.


Assuntos
Aprendizado Profundo , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Estudos de Viabilidade , Humanos , Imagens de Fantasmas , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA