Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1328923, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516011

RESUMO

We present a novel optical nanomotion-based rapid antibiotic and antifungal susceptibility test. The technique consisted of studying the effects of antibiotics or antifungals on the nanometric scale displacements of bacteria or yeasts to assess their sensitivity or resistance to drugs. The technique relies on a traditional optical microscope, a video camera, and custom-made image analysis software. It provides reliable results in a time frame of 2-4 h and can be applied to motile, non-motile, fast, and slowly growing microorganisms. Due to its extreme simplicity and low cost, the technique can be easily implemented in laboratories and medical centers in developing countries.

2.
Nat Methods ; 21(6): 1103-1113, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532015

RESUMO

Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimental settings. Here, we present a multimodality cell segmentation benchmark, comprising more than 1,500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.


Assuntos
Algoritmos , Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Análise de Célula Única , Análise de Célula Única/métodos , Processamento de Imagem Assistida por Computador/métodos , Humanos , Microscopia/métodos , Animais
3.
Nat Commun ; 14(1): 3810, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369667

RESUMO

The ability to independently control the expression of different genes is important for quantitative biology. Using budding yeast, we characterize GAL1pr, GALL, MET3pr, CUP1pr, PHO5pr, tetOpr, terminator-tetOpr, Z3EV, blue-light inducible optogenetic systems El222-LIP, El222-GLIP, and red-light inducible PhyB-PIF3. We report kinetic parameters, noise scaling, impact on growth, and the fundamental leakiness of each system using an intuitive unit, maxGAL1. We uncover disadvantages of widely used tools, e.g., nonmonotonic activity of MET3pr and GALL, slow off kinetics of the doxycycline- and estradiol-inducible systems tetOpr and Z3EV, and high variability of PHO5pr and red-light activated PhyB-PIF3 system. We introduce two previously uncharacterized systems: strongLOV, a more light-sensitive El222 mutant, and ARG3pr, which is induced in the absence of arginine or presence of methionine. To demonstrate fine control over gene circuits, we experimentally tune the time between cell cycle Start and mitosis, artificially simulating near-wild-type timing. All strains, constructs, code, and data ( https://promoter-benchmark.epfl.ch/ ) are made available.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Luz , Regiões Promotoras Genéticas/genética
4.
Nat Phys ; 18: 832-839, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36281344

RESUMO

Checkpoints arrest biological processes allowing time for error correction. The phenomenon of checkpoint override (also known as checkpoint adaptation, slippage, or leakage), during cellular self-replication is biologically critical but currently lacks a quantitative, functional, or system-level understanding. To uncover fundamental laws governing error-correction systems, we derived a general theory of optimal checkpoint strategies, balancing the trade-off between risk and self-replication speed. Mathematically, the problem maps onto the optimization of an absorbing boundary for a random walk. We applied the theory to the DNA damage checkpoint (DDC) in budding yeast, an intensively researched model checkpoint. Using novel reporters for double-strand DNA breaks (DSBs), we first quantified the probability distribution of DSB repair in time including rare events and, secondly, the survival probability after override. With these inputs, the optimal theory predicted remarkably accurately override times as a function of DSB numbers, which we measured precisely for the first time. Thus, a first-principles calculation revealed undiscovered patterns underlying highly noisy override processes. Our multi-DSB measurements revise well-known past results and show that override is more general than previously thought.

5.
Nat Commun ; 11(1): 5723, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184262

RESUMO

The identification of cell borders ('segmentation') in microscopy images constitutes a bottleneck for large-scale experiments. For the model organism Saccharomyces cerevisiae, current segmentation methods face challenges when cells bud, crowd, or exhibit irregular features. We present a convolutional neural network (CNN) named YeaZ, the underlying training set of high-quality segmented yeast images (>10 000 cells) including mutants, stressed cells, and time courses, as well as a graphical user interface and a web application ( www.quantsysbio.com/data-and-software ) to efficiently employ, test, and expand the system. A key feature is a cell-cell boundary test which avoids the need for fluorescent markers. Our CNN is highly accurate, including for buds, and outperforms existing methods on benchmark images, indicating it transfers well to other conditions. To demonstrate how efficient large-scale image processing uncovers new biology, we analyze the geometries of ≈2200 wild-type and cyclin mutant cells and find that morphogenesis control occurs unexpectedly early and gradually.


Assuntos
Microscopia/métodos , Redes Neurais de Computação , Saccharomyces cerevisiae/citologia , Ciclo Celular , Processamento de Imagem Assistida por Computador/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA