Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neoplasia ; 40: 100901, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37058886

RESUMO

BACKGROUND: Approximately 95% of Colorectal cancers (CRC) consist of adenocarcinomas originating from colonic Adenomatous polyps (AP). Increasing importance in CRC occurrence and progression has been attributed to the gut microbiota; however, a huge proportion of microorganisms inhabit the human digestive system. So, to comprehensively study the microbial spatial variations and their role in CRC progression, from AP to the different CRC phases, a holistic vision is imperative, including the simultaneous evaluation of multiple niches from the gastrointestinal system. Through an integrated approach, we identified potential microbial and metabolic biomarkers, able to discriminate human CRC from AP and/or also the different Tumor node metastasis (TNM) staging. In addition, as the microbiota contributes to the production of essential metabolic products detectable in fecal samples, we analysed and compared metabolites obtained from CRC and AP patients by using a Nuclear magnetic resonance (NMR) approach. METHODS: In this observational study, saliva, tissue and stool samples from 61 patients, have been collected, including 46 CRC and 15 AP patients, age and sex-matched, undergoing surgery in 2018 at the Careggi University Hospital (Florence, Italy). First, the microbiota in the three-district between CRC and AP patients has been characterized, as well as in different CRC TNM stages. Subsequently, proton NMR spectroscopy has been used in combination with multivariate and univariate statistical approaches, to define the fecal metabolic profile of a restricted group of CRC and AP patients. RESULTS: CRC patients display a different profile of tissue and fecal microbiota with respect to AP patients. Significant differences have been observed in CRC tissue microbial clades, with a rise of the Fusobacterium genus. In addition, significant taxa increase at the genus level has been observed in stool samples of CRC patients. Furthermore, Fusobacterium found in intestinal tissue has been positively correlated with fecal Parvimonas, for the first time. Moreover, as predicted by metagenomics pathway analysis, a significant increase of lactate (p=0.037) has been observed in the CRC fecal metabolic profiles, and positively correlated with Bifidobacterium (p=0.036). Finally, minor bacterial differences in CRC patients at stage T2 (TNM classification) have been detected, with a raise of the Spirochaetota phylum in CRC samples, with a slight increase of the Alphaproteobacteria class in fecal samples. CONCLUSION: Our results suggest the importance of microbiota communities and oncometabolites in CRC development. Further studies on CRC/AP management with a focus on CRC assessment are needed to investigate novel microbial-related diagnostic tools aimed to improve therapeutic interventions.


Assuntos
Adenoma , Neoplasias Colorretais , Microbioma Gastrointestinal , Microbiota , Neoplasias Retais , Humanos , Neoplasias Colorretais/patologia , Adenoma/diagnóstico , Bactérias , Biomarcadores
2.
Immunol Lett ; 255: 21-31, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36848960

RESUMO

Previous evidences show that Musculin (Msc), a repressor member of basic helix-loop-helix transcription factors, is responsible in vitro for the low responsiveness of human Th17 cells to the growth factor IL-2, providing an explanation for Th17 cells rarity in inflammatory tissue. However, how and to what extent Musculin gene can regulate the immune response in vivo in an inflammatory context is still unknown. Here, exploiting two animal models of inflammatory diseases, the Experimental Autoimmune Encephalomyelitis (EAE) and the dextran sodium sulfate (DSS)-induced colitis, we evaluated the effect of Musculin gene knock-out on clinical course, performing also a deep immune phenotypical analysis on T cells compartment and an extended microbiota analysis in colitis-sick mice. We found that, at least during the early phase, Musculin gene has a very marginal role in modulating both the diseases. Indeed, the clinical course and the histological analysis showed no differences between wild type and Msc knock-out mice, whereas immune system appeared to give rise to a regulatory milieu in lymph nodes of EAE mice and in the spleen of DSS colitis-sick mice. Moreover, in the microbiota analysis, we found irrelevant differences between wild type and Musculin knock-out colitis-sick mice, with a similar bacterial strains' frequency and diversity after the DSS treatment. This work strengthened the idea of a negligible Msc gene involvement in these models.


Assuntos
Colite , Encefalomielite Autoimune Experimental , Microbiota , Animais , Humanos , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Colite/induzido quimicamente , Colite/genética , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Camundongos Endogâmicos C57BL , Células Th17
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA