Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39124130

RESUMO

Non-insecticidal control strategies using entomopathogens, nematodes, and endophytes provide sustainable and safer alternatives for managing crop pests. This study investigated the potential of different fungal endophytes, specifically Beauveria bassiana strains, in colonizing cotton plants and their efficacy against tarnished plant bug, Lygus lineolaris. The effect of endophytes on plant growth parameters and cotton yield were measured during different plant growth stages. The entomopathogenicity of these fungi was studied in diet cup bioassays using L. lineolaris adults. The behavior of adult males and females toward endophytic cotton squares was analyzed using olfactometer assays. The experiments showed that the fungal endophytes colonized the plant structures of cotton plants, which resulted in an increase in the number of cotton squares, plant height, and weight compared to control plants. B. bassiana strains/isolates such as GHA, NI-8, and JG-1 caused significant mortality in Lygus adults compared to controls. Also, male and female Lygus adults exhibited repellence behavior towards endophytic cotton squares containing JG-1 isolate of B. bassiana and to other B. bassiana strains such as NI-8, GHA, and SPE-120. No differences were observed in the survival and development of L. lineolaris second-instar nymphs on endophytic cotton, and no yield differences were observed in the field experiments.

2.
Insects ; 14(10)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37887817

RESUMO

The tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae), has a wide host range of over 700 plant species, including 130 crops of economic importance. During early spring, managing the field edges with weeds and other wild hosts is important in preventing early-season infestations of L. lineolaris in cotton to prevent damage to the squares and other fruiting structures. Scouting fields for L. lineolaris is time- and labor-intensive, and end-user variability associated with field sampling can lead to inaccuracies. Insect traps that combine visual cues and pheromones are more accurate, sustainable, and economically feasible in contrast to traditional insect detection methods. In this study, we investigated the application of red or white sticky cards baited with the female-produced sex pheromone to monitor overwintering L. lineolaris populations in early spring. Field experiments demonstrated that the red sticky cards baited with a pheromone blend containing hexyl butyrate, (E)-2-hexenyl butyrate, and (E)-4-oxo-2-hexenal in 4:10:7 ratio are highly effective in trapping L. lineolaris adults in early spring before the row crops are planted, and in monitoring their movement into a cotton crop. The monitoring of L. lineolaris should help growers to make judicious decisions on insecticide applications to control early pest infestations, thereby reducing economic damage to cotton.

3.
J Fungi (Basel) ; 9(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37367551

RESUMO

This study investigated the exposure of the cotton bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) to a novel pathogenic fungal agent historically associated with human medicinal value, a commercial strain of Cordyceps militaris ((L.) Fr.) Vuill. (Hypocreales). A series of comparative studies were conducted to evaluate the efficacy of two different exposure methods using four concentrations (n × 109, n × 108, n × 107, n × 106) of C. militaris, where n × 109 provided a concentration of approximately 420 ± 37 spores per mm2 with 398 ± 28 viable spores. Survival of cotton bollworms of all stages was not affected by C. militaris at any concentration 1 d post-exposure. The greatest reduction in survival and highest sporulation rates were observed primarily on or after 7 d post-exposure for early instars (first and second). Significant declines in the survival of early instars were observed for all concentrations at 7 d, and 95% mortality by 10 d, with the exception of the fifth instars that experienced a less severe reduction in survival (35%) when exposed to any concentrations used in the study. Survival of late instars (third to fifth) ranged from 44% to 68% on day 10, while adult survival was near 99% across the duration of the experiment. The relatively narrow range observed for both the lethal concentration and sporulation of second, third, and fifth instar cotton bollworms exposed to the C. militaris strain may demonstrate potential field application for control of larval populations of cotton bollworms.

4.
Insects ; 12(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34564247

RESUMO

The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), (Hemiptera: Miridae) is considered the most damaging pest of cotton (Gossypium hirsutum L.) in the mid-southern United States, although it is established throughout the United States, southern Canada, and northern Mexico. The introduction of transgenic crops for the control of moths in the Heliothine complex and eradication of the boll weevil, Anthonomus grandis, from much of the United States led to greatly reduced pesticide use in cotton fields, which allowed L. lineolaris to emerge as a new primary pest of cotton in the mid-southern United States. Since the publication of a review by Layton (2000) on damage caused by Lygus lineolaris, many new studies have been published on the changes in host range, population dynamics, sampling methods and thresholds, cultural practices, sex pheromones and attractant blends, novel pesticides and insecticide resistance mechanisms, olfactory and feeding behaviors, introduction of biological control agents, host-plant resistance mechanisms, and new molecular and genetic tools for integrated pest management of Lygus species in cotton and other important crops. Here, we review and discuss the latest developments in L. lineolaris research in the last two decades.

5.
Microbiol Resour Announc ; 9(50)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303658

RESUMO

Serratia species are Gram-negative bacteria that can infect both animals and plants. The annotated genome presented is the first for a Serratia sp. strain (called CC119) that is a cotton boll pathogen. The opportunistic strain is associated with the boll-piercing-sucking insect Creontiades signatus.

6.
Plant Dis ; 104(9): 2330-2337, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32687435

RESUMO

Lethal bronzing (LB) is a phytoplasma disease of palms in Florida, U.S.A. Historically, the use of the antibiotic oxytetracycline-hydrochloride (OTC-HCl) was optimized to treat for LY, and currently label rates for OTC-HCl developed for LY are being used to treat palms preventatively against LB. Because of the economic impact of LB, assessing OTC-HCl against LB is essential for developing and optimizing management options for this disease. In this study, Sabal palmetto palms declining from LB were injected with OTC-HCl to assess efficacy on LB. Four groups of palms were selected that represented healthy palms, early symptomatic palms, palms with moderate symptoms, and palms with late-stage symptoms. Within each group, treatment palms injected with OTC-HCl and a control group with no antibiotics were tested weekly by quantitative PCR for 1 year. For asymptomatic palms, treated palms never developed symptoms or tested positive, whereas one of the control palms did. The early symptomatic palms that were treated had similar levels of phytoplasma to the control group but had much slower symptom development. Palms with moderate symptoms had no difference in titer between the treatment and the control group, but treated palms had much slower symptom development. Palms with late-stage symptoms showed no difference in phytoplasma titer or symptom progression between treated and control palms. These results suggest that label rates of OTC-HCl appear useful as a preventative against LB, but once symptoms develop, label rates cannot cure palms. In the meantime, removal of symptomatic palms is recommended.


Assuntos
Brassica , Oxitetraciclina , Phytoplasma , Florida , Doenças das Plantas
7.
J Econ Entomol ; 113(2): 793-799, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31879770

RESUMO

Field experiments and supporting laboratory work were conducted to characterize the ability of the verde plant bug, Creontiades signatus (Distant), a boll-feeding sucking bug, to transmit a cotton seed and boll rot bacterial pathogen, Serratia marcescens (Bizio) (Enterobacteriales: Enterobacteriaceae). Serratia marcescens was originally isolated from bolls infested with verde plant bug in south Texas, and a Rifampicin resistant S. marcescens strain was used in transmission and retention experiments. Serratia-exposed and nonexposed adult verde plant bugs from a laboratory colony were placed individually on 5-, 6-, 7-, and 8-d-old bolls (postanthesis). The bacterial acquisition process did not apparently affect insect vigor based on similar average boll injury ratings observed across both exposed and nonexposed bugs. Cotton bolls caged with Serratia-exposed verde plant bugs had significantly greater presence of S. marcescens and cotton boll rot symptoms than bolls caged without bugs (no-insect controls) or nonexposed bugs. Transmission of the disease agent by verde plant bug was confirmed across all boll ages assayed. Incidence of diseased locules on 5- and 6-d-old bolls was the same or greater than on 7- and 8-d-old bolls. Verde plant bug was able to harbor the disease agent from 24- to 96-h postinfection, and transmission efficiency rates ranged from 54 to 62% during initial transmission and retention (transmission across two bolls fed upon consecutively) studies. Along with photographic evidence, the experimental data supported that boll damage associated with verde plant bug infestations was magnified when insects transmitted the cotton pathogen S. marcescens as demonstrated in this 2-yr field experiment.


Assuntos
Óleo de Sementes de Algodão , Heterópteros , Animais , Gossypium , Controle de Insetos , Sementes , Texas
8.
Environ Entomol ; 48(5): 1234-1240, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31504382

RESUMO

Sampling methods for detecting stink bugs are intensive, time-consuming, and yield variable results. In a 2-yr mark-release-observe experiment, over 500 adult green stink bugs, Chinavia hilaris (Say) (Hemiptera: Pentatomidae), were used to test for variation in nocturnal and diurnal insect distribution patterns on cotton. Field-collected stink bugs were marked or unmarked with nontoxic fluorescent sharpie markers, released, and monitored in cotton fields at peak bloom. Stink bugs were monitored visually during day and night, aided by a handheld blacklight for nighttime observations. Within-cotton distribution insect observations were categorized by plant section (i.e., bottom, middle, and top branches), by fruiting positions and leaf surface, and by concealed or exposed orientation on floral bracts and leaf surfaces. Green stink bugs were primarily distributed on the middle and top branches irrespective of photoperiod, and on bolls in first position from the main stem. Differences in stink bugs observed concealed or exposed on fruiting structures were detected. During daytime, stink bugs were primarily observed inside the bract of bolls, and when detected on leaves concealed on the lower surface. In contrast, stink bugs were primarily outside the bract of bolls at night, and when detected on leaves were exposed on an upper surface. These results support focus on assessing internal boll injury for evaluating stink bug injury to avoid the challenges in stink bug detection observed here, and point to additional study to refine stink bug density estimation when needed.


Assuntos
Hemípteros , Heterópteros , Animais , Gossypium , Fotoperíodo , Dispersão Vegetal
9.
J Econ Entomol ; 112(3): 1227-1236, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30759230

RESUMO

Whole-plant cage field experiments were conducted in 2014, 2015, and 2016 to characterize cotton injury from a species complex of boll-feeding sucking bugs represented by the verde plant bug, Creontiades signatus (Distant) (Hemiptera: Miridae), brown stink bug, Euschistus servus (Say), green stink bug, Acrosternum hilare (Say), and redbanded stink bug, Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae). Field-collected adult bugs were used to infest cotton plants previously maintained free of insect injury. Plants caged in groups of four were infested at mid-bloom and late-bloom for 7 d with four insect densities: 0 (control), 0.25 bugs per plant, 1 bug per plant, and 2 bugs per plant. Species and water stress conditions varied across years, allowing selective within-year comparisons. Response to feeding resulted in boll injury in the form of lint deterioration and cotton boll rot at mid- and late-bloom stages, and in water limiting and non-water limiting conditions. Although plant injury was apparent across a wide range of conditions, subsequent yield decline attributed to insect feeding was seen primarily under water limiting conditions when plants were infested at mid-bloom. For these conditions, significant yield-insect density relationships were used to calculate economic injury levels (EILs) for each species. EILs expressed as bugs per plant from lowest to highest were the brown stink bug (0.29-0.31 bugs per plant), redbanded stink bug (0.33), verde plant bug (0.49), and green stink bug (0.50). Given the variability observed among species, species-specific EILs may be used where the injurious species is known and combined for stink bugs (a common EIL of 0.34 bugs per plant) where multiple species occur. Verde plant bug was less damaging and can be considered separately, but its EIL was generally within a range of values for the boll-feeders encountered.


Assuntos
Heterópteros , Animais , Gossypium , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA