RESUMO
The effects of the phenolic compounds of extra virgin olive oil (EVOO) on AGS cells have never been studied so far, which is the aim of this study. The profiles of the main phenolic components in EVOOs, mainly secoiridoid compounds derived from the transformation of oleuropein during the olive milling process, were evaluated and compared. Oils of different origins were evaluated aiming at verifying whether chemical differences in the phenolic composition of the dry extracts played a role in the metabolism and in maintaining the cellular redox state of AGS cells. The following key enzymes of some metabolic pathways were studied: lactate dehydrogenase, enolase, pyruvate kinase, glucose 6-phosphate dehydrogenase, citrate synthase, 3-Hydroxyacyl-CoA dehydrogenase and hexokinase. As confirmed through PCA analysis, pretreatments with the dry extracts of EVOOs at different concentrations appeared to be able to counteract the enzymatic activity alterations due to oxidative stress induced by H2O2 1 mM and 2 mM. The studied phytocomplexes showed the ability to protect AGS cells from oxidative damage and the secoiridoid derivatives from both oleuropein and ligstroside contributed to the observed effects. The results suggested that EVOOs with medium to high concentrations of phenols can exert this protection.
RESUMO
Pâté is a by-product of olive oil production which represents an abundant source of phenolic compounds and can be used for food formulation, reducing its environmental impact and promoting a circular economy. In this context, the effects of a hydroalcoholic extract of pâté were evaluated for the first time in an AGS human cell line commonly used as model of gastric mucosa. Pâté was obtained from Tuscan olives; the total phenolic content was 16.6 mg/g dried extract, with verbascoside and secoiridoid derivatives as the most abundant phenols. The phenolic pâté extract did not alter viability, distribution of cell cycle phases or proliferation and migration of AGS cells at the tested concentrations. Seven enzymes were chosen to investigate the metabolic effect of the pâté extract in the context of oxidative stress. Pâté produced a statistically significant increase in the activity of key enzymes of some metabolic pathways: Lactate dehydrogenase, Enolase, Pyruvate kinase, Glucose 6-phosphate dehydrogenase, Citrate synthase, 3-Hydroxyacyl-CoA dehydrogenase and Hexokinase. Pre-treatments with the extract of pâté at 100 µg/mL or 200 µg/mL, as observed through PCA analysis, appeared able to counteract the enzymatic activity alterations due to oxidative stress induced by H2O2 1 mM and 2 mM. The results indicate that dried pâté, due to its phenolic components, can be proposed as a new functional food ingredient.
Assuntos
Peróxido de Hidrogênio , Olea , Humanos , Azeite de Oliva/farmacologia , Azeite de Oliva/análise , Fenóis/farmacologia , Fenóis/análise , Extratos Vegetais/farmacologia , Óleos de Plantas/farmacologiaRESUMO
Helicobacter pylori gastric infections are among the most diffused worldwide, suffering from a rising rate of antibiotic resistance. In this context, some of the authors have previously designed an ingestible device in the form of a luminous capsule to perform antibacterial photodynamic inactivation in the stomach. In this study, the light-emitting capsules were tested to verify the safety of use prior to perform clinical efficacy studies. First, laboratory tests measured the capsule temperature while in function and verified its chemical resistance in conditions mimicking the gastric and gut environments. Second, safety tests in a healthy minipig model were designed and completed, to verify both the capsule integrity and the absence of side effects, associated with its illumination and transit throughout the gastrointestinal tract. To this aim, a capsule administration protocol was defined considering a total of 6 animals with n = 2 treated with 8 capsules, n = 2 treated with 16 capsules and n = 2 controls with no capsule administration. Endoscopies were performed in sedated conditions before-after every capsule administration. Biopsies were taken from the corpus and antrum regions, while the gastric cavity temperature was monitored during illumination. The bench tests confirmed a very good chemical resistance and a moderate (about 3 °C) heating of the capsules. The animal trials showed no significant effects on the gastric wall tissues, both visually and histologically, accompanied with overall good animal tolerance to the treatment. The integrity of the administered capsules was verified as well. These encouraging results pose the basis for the definition of successive trials at the clinical level.
Assuntos
Antibacterianos , Fototerapia , Animais , Suínos , Porco Miniatura , Segurança de Equipamentos , Antibacterianos/farmacologiaRESUMO
PURPOSE: We investigate, by an extensive quality evaluation approach, performances and potential side effects introduced in Computed Tomography (CT) images by Deep Learning (DL) processing. METHOD: We selected two relevant processing steps, denoise and segmentation, implemented by two Convolutional Neural Networks (CNNs) models based on autoencoder architecture (encoder-decoder and UNet) and trained for the two tasks. In order to limit the number of uncontrolled variables, we designed a phantom containing cylindrical inserts of different sizes, filled with iodinated contrast media. A large CT image dataset was collected at different acquisition settings and two reconstruction algorithms. We characterized the CNNs behavior using metrics from the signal detection theory, radiological and conventional image quality parameters, and finally unconventional radiomic features analysis. RESULTS: The UNet, due to the deeper architecture complexity, outperformed the shallower encoder-decoder in terms of conventional quality parameters and preserved spatial resolution. We also studied how the CNNs modify the noise texture by using radiomic analysis, identifying sensitive and insensitive features to the denoise processing. CONCLUSIONS: The proposed evaluation approach proved effective to accurately analyze and quantify the differences in CNNs behavior, in particular with regard to the alterations introduced in the processed images. Our results suggest that even a deeper and more complex network, which achieves good performances, is not necessarily a better network because it can modify texture features in an unwanted way.
Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Imagens de Fantasmas , Tomografia Computadorizada por Raios XRESUMO
Scratch assay is an easy and widely used "in vitro" technique to study cell migration and proliferation. In this work we focus on its modelling and on the capability to distinguish between these two phenomena that the simpler and common models are not able to disentangle. We adapted a model based on reaction-diffusion equation for being used with common microscopy instruments/data and therefore taking place in the gap between simpler modelling approaches and complex ones. An optimized image analysis pipeline and numerical least-squares fit provide estimates of the scratch proliferation and diffusion coefficients l and D. This work is intended as a first of a series in which the model is tested and its robustness and reproducibility are evaluated. Test samples were NIH3T3 cells scratch assays with proliferation and migration stimulated by varying the foetal bovine serum amount in the culture medium (10%, 7.5%, 5% and 2.5%). Results demonstrate, notwithstanding an expected l-D anticorrelation, the model capability to disentangle them. The 7.5% serum treatment can be identified as the model sensitivity limit. Treat-control l and D variations showed an intra-experiment reproducibility (â¼±0.05∕h and â¼±200µm2∕h respectively) consistent with single fit typical uncertainties (â¼±0.02∕h and â¼±300µm2∕h respectively).
Assuntos
Movimento Celular , Proliferação de Células , Microscopia de Contraste de Fase/métodos , Modelos Biológicos , Animais , Simulação por Computador , Meios de Cultura/química , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Análise dos Mínimos Quadrados , Conceitos Matemáticos , Camundongos , Microscopia de Contraste de Fase/instrumentação , Microscopia de Contraste de Fase/estatística & dados numéricos , Células NIH 3T3RESUMO
Aim: The objective of this study was to investigate the possible synergy between doxycycline and photodynamic therapy against Helicobacter pylori and to evaluate the possible side effects on adenocarcinoma gastric cells with and without protoporphyrin IX. Materials & methods: Three H. pylori strains (ATCC 700392, 43504 and 49503) were grown on solid medium either with, or without, doxycycline at subinhibitory concentrations, and irradiated for 10, 20 and 30 minutes with a 400 nm-peaked light source. The phototoxicity tests on AGS cells were evaluated by MTT assay. Results: The photodynamic therapy and doxycycline combination showed an antibacterial synergistic effect with no significant toxicities. Conclusion: The synergistic treatment could be considered as an interesting therapeutic option.
Assuntos
Antibacterianos/farmacologia , Doxiciclina/farmacologia , Helicobacter pylori/efeitos dos fármacos , Fotoquimioterapia/métodos , Protoporfirinas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Dermatite Fototóxica , Sinergismo Farmacológico , Mucosa Gástrica/citologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/efeitos da radiação , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/radioterapia , Humanos , Testes de Sensibilidade Microbiana , Fotoquimioterapia/efeitos adversosRESUMO
This work inserts in the research field regarding the effects of altered gravity conditions on biological plant processes. Pinus pinea seeds germination was studied in simulated microgravity (2x10-3g) and hypergravity (20g) conditions. The effects of simulated gravity were evaluated monitoring the levels of the key enzymes, involved in the main metabolic pathway during germination process of lipid-rich seeds (oilseeds): isocitrate lyase and malate synthase for glyoxylate cycle, 3-hydroxyacyl-CoA dehydrogenase for beta-oxidation, isocitrate dehydrogenase for Krebs cycle, pyruvate kinase for glycolysis and glucose 6 phosphate dehydrogenase for pentose phosphate shunt. The simulated micro and hypergravity conditions were obtained by a Random Position Machine and a Hyperfuge, respectively. Results show that the levels of some tested enzymes, at different lag times of the germination process, have the same trend of controls (gâ¯=â¯1), but with significant differences from quantitative point of view. They are higher in microgravity conditions and lower in hypergravity ones, suggesting that, from a biochemical point of view, the germination process results accelerated in microgravity conditions and delayed in hypergravity ones. These biochemical results show a good correlation with morphological ones, obtained with the measurement of the length of the seeds sprouting radicle. These results give promising indications regarding the possibility to grow plant with lipid-rich seeds in spatial environment, to obtain food sources for astronauts during long term space missions and to reconstitute new atmosphere.
Assuntos
Glioxilatos/metabolismo , Pinus/metabolismo , Sementes/metabolismo , Germinação/fisiologia , Ausência de PesoRESUMO
Cell staining techniques are well established in cell biology and associated with a broad range of dedicated dyes; however, they are accompanied by non-negligible costs, preparation time and unavoidable alterations of the sample with foreign molecules. In this context, we point out and propose the use of darkfield microscopy (DM) combined with different fixation protocols (to be used anyway) to enhance the different cell structures and districts as a timesaving and inexpensive support to the techniques that need staining or immuno-staining protocols and products. In a first step, we have analysed the effect of different fixation protocols on DM images for various human cellular lines. The presented imaging study shows that cell morphology actually changes with the fixation protocols that enhance, through contrast and luminosity variations, different shapes and patterns and thus structures of the cells. The different chemical action of various fixations, in fact, modifies the local scattering coefficient, thus affecting in a different way the morphology shown by DM images. As a second step we have compared the observed DM morphologies to those of selective fluorescent staining being therefore able to associate them to specific cell districts (e.g. nucleus, membrane or cytoskeleton). The obtained results indicate that this common microscopy technique can give images with particular cellular structures or districts enhanced more than others depending on the choice of fixation protocol. Therefore Darkfield Microscopy can be considered as a simpler, cheaper and faster method to provide morphological indications, respect to staining techniques, even at low and medium magnifications.
Assuntos
Citoesqueleto/metabolismo , Microscopia de Fluorescência , Coloração e Rotulagem , Fixação de Tecidos , Linhagem Celular , Núcleo Celular/metabolismo , Humanos , Microscopia de Fluorescência/métodos , Fixação de Tecidos/métodosRESUMO
Since many years it has been acknowledged that some bacterial species, among which H. pylori, P. aeruginosa, P. acnes accumulate endogenous photosensitizers (PS) in the form of porphyrins. This makes antibacterial photodynamic therapy (PDT) easier to perform due to the possible avoidance of external PS. In this study, we focus on gastric infections associated with the presence of Helicobacter pylori (H. pylori), known to accumulate and release both protoporphyrin IX (PPIX) and coproporphyrins. PDT versus H. pylori can be carried out by modified endoscopes or by new ingestible luminous devices under development. In both cases of in vitro and in vivo applications, either for therapy (PDT) or diagnosis, scientific literature lacks studies on the possible side-effects of light treatments on the surrounding tissues. To this aim we evaluated in vitro side-effects due to a possible intrinsic photosensitivity of gastric mucosa or to a photosensitization by the PS released from the bacterium itself. Photo-toxicity studies were conducted on the AGS cell line (ATCC® CRL-1739™), commonly used as a model for the stomach mucosa tissue, considering PPIX as the photosensitizing agent. After first evaluations of PPIX dark toxicity, its uptake and accumulation sites, photo-toxicity tests were conducted using a LED light source peaked at 400â¯nm, by varying both PPIX concentration (50â¯nM - 2⯵M) and light dose in the range 0.6-13â¯J/cm2, representing different treatment procedures found in literature. The oxidative stress consequent to irradiation was investigated both in terms of ROS production and assessment of the activity of enzymes involved in ROS-related biological mechanisms. A significant phototoxic effect was found only for PPIX concentrationâ¯>â¯100â¯nM for all tested light doses. This indicates that the evaluated photo-treatments do not cause side effects even with the sensitization due to PPIX released by the bacteria.
Assuntos
Mucosa Gástrica/efeitos dos fármacos , Luz , Fármacos Fotossensibilizantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Mucosa Gástrica/efeitos da radiação , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/efeitos da radiação , Humanos , Microscopia Confocal , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Fotoquimioterapia/efeitos adversos , Fármacos Fotossensibilizantes/uso terapêutico , Protoporfirinas/metabolismo , Protoporfirinas/farmacologia , Protoporfirinas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismoRESUMO
In the fields of nanomedicine, biophotonics and radiation therapy, nanoparticle (NP) detection in cell models often represents a fundamental step for many in vivo studies. One common question is whether NPs have or have not interacted with cells. In this context, we propose an imaging based technique to detect the presence of NPs in eukaryotic cells. Darkfield images of cell cultures at low magnification (10×) are acquired in different spectral ranges and recombined so as to enhance the contrast due to the presence of NPs. Image analysis is applied to extract cell-based parameters (i.e. mean intensity), which are further analyzed by statistical tests (Student's t-test, permutation test) in order to obtain a robust detection method. By means of a statistical sample size analysis, the sensitivity of the whole methodology is quantified in terms of the minimum cell number that is needed to identify the presence of NPs. The method is presented in the case of HeLa cells incubated with gold nanorods labeled with anti-CA125 antibodies, which exploits the overexpression of CA125 in ovarian cancers. Control cases are considered as well, including PEG-coated NPs and HeLa cells without NPs.
Assuntos
Escuridão , Microscopia/métodos , Nanopartículas/metabolismo , Anticorpos/química , Anticorpos/imunologia , Transporte Biológico , Antígeno Ca-125/imunologia , Ouro/química , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Proteínas de Membrana/imunologia , Nanopartículas/química , Polietilenoglicóis/químicaRESUMO
BACKGROUND: The interest for gold nanorods in biomedical optics is driven by their intense absorbance of near infrared light, their biocompatibility and their potential to reach tumors after systemic administration. Examples of applications include the photoacoustic imaging and the photothermal ablation of cancer. In spite of great current efforts, the selective delivery of gold nanorods to tumors through the bloodstream remains a formidable challenge. Their bio-conjugation with targeting units, and in particular with antibodies, is perceived as a hopeful solution, but the complexity of living organisms complicates the identification of possible obstacles along the way to tumors. RESULTS: Here, we present a new model of gold nanorods conjugated with anti-cancer antigen 125 (CA125) antibodies, which exhibit high specificity for ovarian cancer cells. We implement a battery of tests in vitro, in order to simulate major nuisances and predict the feasibility of these particles for intravenous injections. We show that parameters like the competition of free CA125 in the bloodstream, which could saturate the probe before arriving at the tumors, the matrix effect and the interference with erythrocytes and phagocytes are uncritical. CONCLUSIONS: Although some deterioration is detectable, anti-CA125-conjugated gold nanorods retain their functional features after interaction with blood tissue and so represent a powerful candidate to hit ovarian cancer cells.
Assuntos
Anticorpos/administração & dosagem , Antineoplásicos/administração & dosagem , Antígeno Ca-125/imunologia , Ouro/administração & dosagem , Proteínas de Membrana/imunologia , Nanotubos/química , Animais , Anticorpos/química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antígeno Ca-125/administração & dosagem , Antígeno Ca-125/química , Linhagem Celular Tumoral , Cetrimônio , Compostos de Cetrimônio/química , Avaliação Pré-Clínica de Medicamentos/métodos , Eritrócitos/efeitos dos fármacos , Feminino , Ouro/química , Humanos , Immunoblotting , Injeções Intravenosas , Macrófagos/efeitos dos fármacos , Proteínas de Membrana/administração & dosagem , Proteínas de Membrana/química , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologiaRESUMO
We present a darkfield optical microspectroscopy technique devoted to the disentangled measurement of the absorption and scattering cross sections of nanoparticle (NP) samples with variable concentration. The robustness of the method, including the needed instrumental calibrations, is examined in detail by analyzing and quantifying the major sources of statistic and systematic errors. As an exemplary case, results are presented on a gold NP colloid. The technique takes advantage of a simple inverted microscope, coupled with a spectrograph and equipped with a darkfield condenser and a variable numerical aperture objective to obtain spectra either in darkfield or brightfield optical configurations. By adopting the Lambert-Beer (LB) equation modeling, we were able to disentangle and measure with a single setup the absorption, scattering, and extinction coefficients of the same sample by combining three spectra, obtained by opportunely varying the objective numerical aperture. Typical plasmonic resonances were recognized at approximately 520 and 750 nm. Optical coefficients were measured as a function of particle number density (0.04-3.94 µm(-3), corresponding to 40 µM-4 mM nominal Au concentration) and good linearity was verified up to â¼1.5 µm(-3) (â¼1 mM Au). Moreover, extinction and scattering cross sections were quantified and the validity of the LB approximation was reviewed. Besides its applications to plasmonic NPs, this method may be appropriate for any colloid, provided there exists a characteristic spectral feature in the ultraviolet-visible-near infrared range. This technique may be exploited to localize NPs in biological samples.