Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Environ Toxicol ; 39(5): 2993-3002, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38314641

RESUMO

Fludioxonil (Flu) is a phenylpyrrole fungicide and is currently used in over 900 agricultural products globally. Flu possesses endocrine-disrupting chemical-like properties and has been shown to mediate various physiological and pathological changes, such as apoptosis and differentiation, in diverse cell lines. However, the effects of Flu on cardiomyocytes have not been studied so far. The present study investigated the effects of Flu on mitochondria in AC16 human cardiomyocytes and H9c2 rat cardiomyoblasts. Flu decreased cell viability in a water-soluble tetrazolium assay and mediated morphological changes suggestive of apoptosis in AC16 and H9c2 cells. We confirmed that annexin V positive cells were increased by Flu through annexin V/propidium iodide staining. This suggests that the decrease in cell viability due to Flu may be associated with increased apoptotic changes. Flu consistently increased the expression of pro-apoptotic markers such as Bcl-2-associated X protein (Bax) and cleaved-caspase 3. Further, Flu reduced the oxygen consumption rate (OCR) in AC16 and H9c2 cells, which is associated with decreased mitochondrial membrane potential (MMP) as observed through JC-1 staining. In addition, Flu augmented the production of mitochondrial reactive oxygen species, which can trigger oxidative stress in cardiomyocytes. Taken together, these results indicate that Flu induces mitochondrial dysregulation in cardiomyocytes via the downregulation of the OCR and MMP and upregulation of the oxidative stress, consequently resulting in the apoptosis of cardiomyocytes. This study provides evidence of the risk of Flu toxicity on cardiomyocytes leading to the development of cardiovascular diseases and suggests that the use of Flu in agriculture should be done with caution and awareness of the probable health consequences of exposure to Flu.


Assuntos
Dioxóis , Doenças Mitocondriais , Miócitos Cardíacos , Pirróis , Ratos , Animais , Humanos , Cardiotoxicidade/metabolismo , Anexina A5/metabolismo , Anexina A5/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Doenças Mitocondriais/metabolismo , Potencial da Membrana Mitocondrial
2.
Environ Toxicol ; 39(4): 2304-2315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38148711

RESUMO

Cigarette smoke induces an inflammatory response in the lungs by recruiting inflammatory cells, leading to lung diseases such as lung cancer, chronic obstructive pulmonary disease, and pulmonary fibrosis. Existing inhalation exposure methods for assessing the adverse effects of cigarette smoke require expensive equipment and are labor-intensive. Therefore, we attempted to develop a novel method to assess these adverse effects using intratracheal instillation (ITI) of whole cigarette smoke condensate (WCSC). The WCSC (0, 5, 10, or 20 mg/mL) was administered by ITI once daily for 6 or 12 days using an automatic video instillator. Repeated WCSC ITI increased the lung weight, and monocyte chemoattractant protein-1 (MCP-1), neutrophil, and lymphocyte levels within bronchoalveolar lavage fluid compared to the control. In the histopathological analysis of the lung tissue, a mild inflammatory response was observed in the 6 and 12 days 20 mg/mL WCSC exposure groups. The genome-wide RNA-seq expression patterns revealed that inflammatory and immune response-related genes, such as the chemokine signaling pathway, Th1/Th2 cell differentiation, and cytokine-cytokine receptor interaction, were employed following WCSC exposure. In addition, MCP-1 was time-dependent and increased in the 10 mg/mL exposure group compared to the control group. These results suggested that the WCSC might induce the potential pulmonary inflammatory response. Furthermore, we proposed that ITI may be a rapid and effective method of evaluating the adverse effects of WCSC within a short exposure period (less than 2 weeks), and it can be used to evaluate cigarette inhalation toxicity studies as an alternative method.


Assuntos
Fumar Cigarros , Pneumopatias , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Pulmão , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pneumopatias/patologia , Líquido da Lavagem Broncoalveolar
3.
Toxicol Res ; 39(3): 333-339, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37398565

RESUMO

The increase in the types and complexity of diseases has led to significant advances in diagnostic techniques and the availability of effective therapies. Recent studies have focused on the role of mitochondrial dysfunction in the pathogenesis of cardiovascular diseases (CVDs). Mitochondria are important organelles in cells that generate energy. Besides the production of adenosine triphosphate (ATP), the energy currency of cells, mitochondria are also involved in thermogenesis, control of intracellular calcium ions (Ca2+), apoptosis, regulation of reactive oxygen species (ROS), and inflammation. Mitochondrial dysfunction has been implicated in several diseases including cancer, diabetes, some genetic diseases, and neurogenerative and metabolic diseases. Furthermore, the cardiomyocytes of the heart are rich in mitochondria due to the large energy requirement for optimal cardiac function. One of the main causes of cardiac tissue injuries is believed to be mitochondrial dysfunction, which occurs via complicated pathways which have not yet been completely elucidated. There are various types of mitochondrial dysfunction including mitochondrial morphological change, unbalanced levels of substances to maintain mitochondria, mitochondrial damage by drugs, and mitochondrial deletion and synthesis errors. Most of mitochondrial dysfunctions are linked with symptoms and diseases, thus we focus on parts of mitochondrial dysfunction about fission and fusion in cardiomyocytes, and ways to understand the mechanism of cardiomyocyte damage by detecting oxygen consumption levels in the mitochondria.

4.
Life Sci ; 328: 121866, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37331506

RESUMO

AIMS: Gastric cancer (GC) is an invasive, fatal disease with a poor prognosis. Gene-directed enzyme prodrug therapy via genetically engineered neural stem cells (GENSTECs) has been widely studied in various malignancies, such as breast, ovarian, and renal cancer. In this study, the human neural stem cells expressing cytosine deaminase and interferon beta (HB1.F3.CD.IFN-ß) cells were applied to convert non-toxic 5-fluorocytosine to cytotoxic 5-fluorouracil and secrete IFN-ß. MATERIALS AND METHODS: Human lymphokine-activated killer cells (LAKs) were generated by stimulating human peripheral blood mononuclear cells (PBMCs) by interleukin-2, and we evaluated the cytotoxic activity and migratory ability of LAKs co-cultured with GNESTECs or their conditioned media in vitro. A GC-bearing human immune system (HIS) mouse model was generated by transplanting human PBMCs followed by subcutaneous engraftment of MKN45 cells in NSG-B2m mice to evaluate the involvement of T cell-mediated anti-cancer immune activity of GENSTECs. KEY FINDINGS: In vitro studies showed the presence of HB1.F3.CD.IFN-ß cells facilitated the migration ability of LAKs to MKN45 cells and activated their cytotoxic potential. In MKN45-xenografted HIS mice, treatment with HB1.F3.CD.IFN-ß cells resulted in increased cytotoxic T lymphocyte (CTL) infiltration throughout the tumor, including the central area. Moreover, the group treated to HB1.F3.CD.IFN-ß showed increased granzyme B expression in the tumor, eventually enhancing the tumor-killing potential of CTLs and significantly delaying tumor growth. SIGNIFICANCE: These results indicate that the HB1.F3.CD.IFN-ß cells exert anti-cancer effects on GC by facilitating the T cell-mediated immune response, and GENSTECs are a promising therapeutic strategy for GC.


Assuntos
Antineoplásicos , Células-Tronco Neurais , Neoplasias Gástricas , Humanos , Animais , Camundongos , Interferon beta/metabolismo , Neoplasias Gástricas/terapia , Neoplasias Gástricas/metabolismo , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Leucócitos Mononucleares/metabolismo , Linhagem Celular Tumoral , Células-Tronco Neurais/metabolismo , Antineoplásicos/metabolismo
5.
Biomed Pharmacother ; 163: 114780, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37105075

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancer types that is highly resistant to conventional treatments, such as chemotherapy and radiotherapy. As the demand for more effective therapeutics for PDAC treatment increases, various approaches have been studied to develop novel targets. The cellular communication network (CCN) family is a matricellular protein that modulates various cellular functions, including cell adhesion, proliferation, migration, and invasiveness. Despite this, little is known about the role of CCN6 in PDAC. The current study investigated the role of CCN6 in PDAC by generating CCN6-overexpressing PANC-1 cells (PANC-1-CCN6) by infecting lentivirus particles containing CCN6. PANC-1-CCN6 induces cell viability and tumorigenesis than PANC-1 cells with empty vector (control). The PANC-1-CCN6 formed more colonies, and the size of spheroids increased compared to the control. The upregulation of CCN6 enhances the expression of bone morphogenetic proteins (BMPs) genes and the upregulation of p38 mitogen-activated protein kinases (MAPKs). In PANC-1-CCN6 cells, the levels of N-cadherin, VEGF, and Snail expression were higher than the control, while E-cadherin expression was lower, which is associated with upregulation of epithelial-to-mesenchymal transition (EMT). Consistent with the changes in EMT-related proteins in PANC-1-CCN6, the migratory ability and invasiveness were enhanced in PANC-1-CCN6. Xenografted PANC-1-CCN6 in immunocompromised mice exhibited accelerated tumor growth than the control group. In immunohistochemistry (IHC), the PANC-1-CCN6 xenografted tumor showed an increased positive area of PCNA and Ki-67 than the control. These results suggest that CCN6 plays a tumorigenic role and induces the metastatic potential by the p38 MAPK and BMPs signaling pathways. Although the role of CCN6 has been introduced as an antitumor factor, there was evidence of CCN6 acting to cause tumorigenesis and invasion in PANC-1.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Proteínas Morfogenéticas Ósseas , Carcinogênese , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células , Transição Epitelial-Mesenquimal , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Proteína Quinase 14 Ativada por Mitógeno , Neoplasias Pancreáticas
6.
Biomed Pharmacother ; 159: 114212, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36610224

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, with high mortality and recurrence rate. In this study, we generated a human immune system mouse model by transplanting human peripheral blood mononuclear cells into NSG-B2m mice followed by xenografting AsPC-1 cells, after which we assessed the role of transforming growth factor-ß2 (TGF-ß2) in T-cell-mediated anti-tumor immunity. We observed that inhibiting the TGF-ß2 production by TGF-ß2 antisense oligonucleotide (TASO) combined with IL-2 delays pancreatic cancer growth. Co-treatment of TASO and IL-2 had little effect on the SMAD-dependent pathway, but significantly inhibited the Akt phosphorylation and sequentially activated GSK-3ß. Activation of GSK-3ß by TASO subsequently suppressed ß-catenin and α-SMA expression and resulted in attenuated fibrotic reactions, facilitating the infiltration of CD8 + cytotoxic T lymphocytes (CTLs) into the tumor. TGF-ß2 inhibition suppressed the Foxp3 + regulatory T-cells in peripheral blood and tumors, thereby enhancing the tumoricidal effects of CTLs associated with increased granzyme B and cleaved caspase-3. Moreover, changes in the T-cell composition in peripheral blood and at the tumor site by TASO and IL-2 induced the increase of pro-inflammatory cytokines such as IFN-γ and TNF-α and the decrease of anti-inflammatory cytokines such as TGF-ßs. These results indicate that the TGF-ß2 inhibition by TASO combined with IL-2 enhances the T-cell mediated anti-tumor immunity against SMAD4-mutated PDAC by modulating the tumor-associated fibrosis, suggesting that TASO in combination with IL-2 may be a promising immunotherapeutic intervention for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Citocinas , Glicogênio Sintase Quinase 3 beta , Interleucina-2 , Leucócitos Mononucleares/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Neoplasias Pancreáticas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Neoplasias Pancreáticas
7.
Cancers (Basel) ; 14(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36358638

RESUMO

Anti-programmed death-1 (PD-1) immunotherapy is one of the most promising therapeutic interventions for treating various tumors, including lung cancer, bladder cancer, and melanoma. However, only a subset of patients responds to anti-PD-1 therapy due to complicated immune regulation in tumors and the evolution of resistance. In the current study, we investigate the potential of a novel transforming growth factor-beta2 (TGF-ß2) antisense oligonucleotide (ngTASO), as a combination therapy with an anti-PD-1 antibody in melanoma. This study was conducted in a melanoma-bearing human immune system mouse model that recapitulates immune-excluded phenotypes. We observed that the TGF-ß2 blockade by ngTASO in combination with PD-1 inhibition downregulated the tumor intrinsic ß-catenin, facilitated the infiltration of CD8+ cytotoxic lymphocytes (CTLs) in the tumor, and finally, enhanced the antitumor immune potentials and tumor growth delays. Blockade of TGF-ß2 combined with PD-1 inhibition also resulted in downregulating the ratio of regulatory T cells to CTLs in the peripheral blood and tumor, resulting in increased granzyme B expression. In addition, co-treatment of ngTASO and anti-PD-1 augmented the PD-L1 expression in tumors, which is associated with an improved response to anti-PD-1 immunotherapy. These results indicate that the combination of ngTASO and anti-PD-1 exerts an enhanced T cell-mediated antitumor immune potential. Hence, co-inhibition of TGF-ß2 and PD-1 is a potentially promising immunotherapeutic strategy for immune-excluded melanoma.

8.
Toxicol Res ; 38(4): 511-522, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36277363

RESUMO

The heart has an abundance of mitochondria since cardiac muscles require copious amounts of energy for providing continuous blood through the circulatory system, thereby implying that myocardial function is largely reliant on mitochondrial energy. Thus, cardiomyocytes are susceptible to mitochondrial dysfunction and are likely targets of mitochondrial toxic drugs. Various methods have been developed to evaluate mitochondrial toxicity by evaluating toxicological mechanisms, but an optimized and standardized assay for cardiomyocytes remains unmet. We have therefore attempted to standardize the evaluation system for determining cardiac mitochondrial toxicity, using AC16 human and H9C2 rat cardiomyocytes. Three clinically administered drugs (acetaminophen, amiodarone, and valproic acid) and two anticancer drugs (doxorubicin and tamoxifen) which are reported to have mitochondrial effects, were applied in this study. The oxygen consumption rate (OCR), which directly reflects mitochondrial function, and changes in mRNA levels of mitochondrial respiratory complex I to complex V, were analyzed. Our results reveal that exposure to all five drugs results in a concentration-dependent decrease in the basal and maximal levels of OCR in AC16 cells and H9C2 cells. In particular, marked reduction in the OCR was observed after treatment with doxorubicin. The reduction in OCR after exposure to mitochondrial toxic drugs was found to be associated with reduced mRNA expression in the mitochondrial respiratory complexes, suggesting that the cardiac mitochondrial toxicity of drugs is majorly due to dysfunction of mitochondrial respiration. Based on the results of this study, we established and standardized a protocol to measure OCR in cardiomyocytes. We expect that this standardized evaluation system for mitochondrial toxicity can be applied as basic data for establishing a screening platform to evaluate cardiac mitochondrial toxicity of drugs, during the developmental stage of new drug discovery.

9.
Life Sci ; 305: 120754, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35780843

RESUMO

Fenhexamid (Fen) is used to eradicate gray mold of fruits and vegetables leading to greater detection of its residual concentration in wine than other fungicides. Here, we further investigated the malign influence of Fen on the migration and angiogenesis via regulation of the estrogen receptor (ER) and phosphoinositide 3-kinase (PI3K) pathways in breast cancer models. ER-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells were exposed to 17ß-estradiol (E2, 10-9 M), Fen (10-5 M and 10-7 M), ICI 182,780 (ICI; an ER antagonist, 10-8 M) or/and Pictilisib (Pic; a PI3K inhibitor, 10-7 M), and subsequently subjected to migration assay, live cell motility monitoring, trans-chamber assay, immunofluorescence, angiogenesis assay, tumor spheroid formation, and Western blot analysis. In MCF-7 cells, E2 and Fen induced cell migration by regulating the cell migration-related proteins. Although expressions of N-cadherin and Vimentin remained unchanged E2 and Fen induced the decrease of E-cadherin and Occludin in the immunofluorescence assay and Western blot analysis. In addition, Fen increased vessel formation in HUVEC cells. Furthermore, Fen treatment induced the formation of larger and denser tumor spheroids in MCF-7 cells. Western blot further confirmed the increased expressions of vascular endothelial growth factor (VEGF) and sex-determining region Y-box 2 (SOX2) after exposure to Fen. We conclude that Fen plays an important role as an endocrine-disrupting chemical in breast cancer migration and metastasis through the regulation of ER and PI3K signaling pathways.


Assuntos
Neoplasias da Mama , Fungicidas Industriais , Amidas , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Estradiol/farmacologia , Feminino , Humanos , Neovascularização Patológica , Fosfatidilinositol 3-Quinases , Receptores de Estrogênio/metabolismo , Fator A de Crescimento do Endotélio Vascular
10.
Toxicol In Vitro ; 83: 105393, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35618243

RESUMO

Mitochondria are important cytoplasmic elements present in eukaryotic cells, and are involved in converting energy to ATP through oxidative phosphorylation. Mitochondria are vulnerable to reactive oxygen species (ROS), thereby making it imperative to evaluate the toxicity. However, existing methods that evaluate mitochondrial toxicity in cardiomyocytes are limited. In the current study, we aimed to determine a mitochondrial biomarker that measures the toxicity of mitochondria, and subsequently suggest an efficient evaluation system for evaluating mitochondrial-specific oxidative toxicity. To achieve this, AC16 human cardiomyocytes, H9C2 rat cardiomyocytes were exposed to acetaminophen (AP), amiodarone hydrochloride (AMD), doxorubicin hydrochloride (Dox), valproic acid sodium salt (Val), and (Z)-4-hydroxytamoxifen (4-OHT). Mitochondrial oxidative stress was determined by staining the drug-treated cells with MitoSOX™ red fluorescence dye, followed by imaging with a fluorescence microscope. All working concentrations of Dox showed increased levels of red fluorescence in AC16 and H9C2 cells, whereas exposure to Val did not alter the red fluorescence level of both cells. Considering our results, increased MitoSOX™ subsequent to drug exposure is a highly reproducible and reliable method to measure the mitochondrial-specific oxidative toxicity. These results indicate that a screening system using MitoSOX™ has the potential to be applied as a reliable biomarker for determining mitochondrial oxidative toxicity in new drug development.


Assuntos
Miócitos Cardíacos , Superóxidos , Animais , Doxorrubicina/toxicidade , Humanos , Mamíferos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
11.
Environ Toxicol ; 37(5): 1231-1243, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35112775

RESUMO

Cigarette smoke (CS) substances are known to induce diverse ailments such as cancer, decreased immunity, and lung diseases. Although some studies have been actively conducted to evaluate cigarette toxicity, the current animal exposure methods, that is, exposure of 28- or 90-days, require considerable research cost and lead to obscure results of the CS effects. In a previous study, we compared the effects of CS in a rat model of bleomycin (BLM) and lipopolysaccharide (LPS) induced lung disease. We determined that compared to the LPS-induced rat model, the BLM-induced rat model was more sensitive to alterations in secreting cytokines and total cell number. In the current study, we further confirmed the time-point of effective inhalation exposure by CS in the BLM-induced lung injury rat model. Using an automatic video instillator, rats were administered a single dose of 2.5 mg/kg BLM (day 1), and subsequently exposed to CS via inhalation (nose-only) 4 h/day, for 1, 2, 3, and 4 weeks. The bronchoalveolar lavage fluid (BALF) was obtained from the right lung lobes, total cell numbers were counted, and chemokine and cytokine expressions were evaluated using Enzyme-Linked Immunosorbent Assay. For the 1-week exposure, we observed a greater increase of neutrophils in the BLM + CS 300 µg/L group than in the BLM or CS 300 µg/L groups. Exposure of CS in the BLM-induced lung injury rat model enhanced the secretions of chemokines and cytokines, such as CCL2/MCP-1, CXCL2/MIP-2 and TNF-α, at 1 week. Immunohistochemistry and Hematoxylin and Eosin staining of lungs at 1-2 weeks after exposure clearly confirmed this tendency in the increased levels of CCL2/MCP-1 and TNF-α. Taken together, these results indicate that the rat model of BLM-induced lung injury is more sensitive to CS exposure than other rat models, and may be an appropriate model to evaluate the effect of CS exposure at 1-2 weeks.


Assuntos
Fumar Cigarros , Lesão Pulmonar , Animais , Bleomicina/toxicidade , Líquido da Lavagem Broncoalveolar/química , Fumar Cigarros/efeitos adversos , Pulmão , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Ratos
12.
Biomol Ther (Seoul) ; 30(2): 151-161, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34261818

RESUMO

This study elucidates the anti-cancer potential of gallic acid (GA) as a promising therapeutic agent that exerts its effect by regulating the PI3K/Akt pathway. To prove our research rationale, we used diverse experimental methods such as cell viability assay, colony formation assay, tumor spheroid formation assay, cell cycle analysis, TUNEL assay, Western blot analysis, xenograft mouse model and histological analysis. Treatment with GA inhibited cell proliferation in dose-dependent manner as measured by cell viability assay at 48 h. GA and cisplatin (CDDP) also inhibited colony formation and tumor spheroid formation. In addition, GA and CDDP induced apoptosis, as determined by the distribution of early and late apoptotic cells and DNA fragmentation. Western blot analysis revealed that inhibition of the PI3K/Akt pathway induced upregulation of p53 (tumor suppressor protein), which in turn regulated cell cycle related proteins such as p21, p27, Cyclin D1 and E1, and intrinsic apoptotic proteins such as Bax, Bcl-2 and cleaved caspase-3. The anti-cancer effect of GA was further confirmed in an in vivo mouse model. Intraperitoneal injection with GA for 4 weeks in an A549-derived tumor xenograft model reduced the size of tumor mass. Injection of them downregulated the expression of proliferating cell nuclear antigen and p-Akt, but upregulated the expression of cleaved caspase-3 in tumor tissues. Taken together, these results indicated that GA hindered lung cancer progression by inducing cell cycle arrest and apoptosis, suggesting that GA would be a potential therapeutic agent against non-small cell lung cancer.

13.
Can J Vet Res ; 85(3): 177-185, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34248261

RESUMO

From 50 to 60% of companion animals in the United States are overweight or obese and this obesity rate is rising. As obesity is associated with a number of health problems, an agent that can help weight loss in pets and assist in clinically managing obesity through veterinary prescription foods and medication would be beneficial. Many studies have shown that celastrol, a phytochemical compound found in Celastrus orbiculatus extract (COE), has anti-obesity and anti-inflammatory effects, although these effects have not yet been determined in canine or canine-derived cells. The objective of this study was to investigate the effects of celastrol on the adipogenic differentiation and lipolysis of canine adipocytes. Primary preadipocytes were isolated from the gluteal region of a beagle dog and the primary adipocytes were differentiated into mature adipocytes by adipocyte differentiation media containing isobutylmethylxanthine, dexamethasone, and insulin. In a water-soluble tetrazolium (WST) assay, the cell viability of mature adipocytes was decreased after treatment with COE (0, 0.93, 2.32, and 4.64 nM celastrol) in a concentration-dependent manner, although preadipocytes were not affected. Oil Red O (ORO) staining revealed that COE inhibited the differentiation into mature adipocytes and lipid accumulation in adipocytes. In addition, treatment with COE significantly reduced triglyceride content and increased lipolytic activities by 1.5-fold in canine adipocytes. Overall, it was concluded that COE may enhance anti-obesity activity in canine adipocytes by inhibiting lipid accumulation and increasing lipolytic activity.


De 50 à 60 % des animaux de compagnie aux États-Unis sont en surpoids ou obèses et ce taux d'obésité est en augmentation. Comme l'obésité est associée à un certain nombre de problèmes de santé, un agent qui peut aider à la perte de poids chez les animaux de compagnie et à la gestion clinique de l'obésité au moyen d'aliments et de médicaments sur ordonnance vétérinaire serait bénéfique. De nombreuses études ont montré que le célastrol, un composé phytochimique présent dans l'extrait de Celastrus orbiculatus (COE), a des effets anti-obésité et anti-inflammatoires, bien que ces effets n'aient pas encore été déterminés dans les cellules canines ou dérivées de canins. L'objectif de cette étude était d'étudier les effets du célastrol sur la différenciation adipogène et la lipolyse des adipocytes canins. Des pré-adipocytes primaires ont été isolés de la région fessière d'un chien beagle et les adipocytes primaires ont été différenciés en adipocytes matures par des milieux de différenciation adipocytaires contenant de l'isobutylméthylxanthine, de la dexaméthasone et de l'insuline. Dans un essai au tétrazolium hydrosoluble (WST), la viabilité cellulaire des adipocytes matures a diminué après traitement avec du COE (0, 0,93, 2,32 et 4,64 nM de célastrol) d'une manière dépendante de la concentration, bien que les pré-adipocytes n'aient pas été affectés. La coloration Oil Red O (ORO) a révélé que le COE inhibait la différenciation en adipocytes matures et l'accumulation de lipides dans les adipocytes. De plus, le traitement avec le COE a considérablement réduit la teneur en triglycérides et augmenté les activités lipolytiques de 1,5 fois dans les adipocytes canins. Dans l'ensemble, il a été conclu que le COE peut améliorer l'activité anti-obésité dans les adipocytes canins en inhibant l'accumulation de lipides et en augmentant l'activité lipolytique.(Traduit par Docteur Serge Messier).


Assuntos
Adipócitos/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Celastrus/química , Cães , Extratos Vegetais/farmacologia , Adipogenia , Animais , Fármacos Antiobesidade/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Extratos Vegetais/química
14.
Reprod Toxicol ; 104: 76-84, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34280493

RESUMO

Fludioxnil is extensively used as a fungicide in agricultural application, but its possible impact on embryonic development is not yet well understood. In this study, the potential effect of fludioxonil on cardiac differentiation was evaluated in mouse embryonic stem cells (mESCs). The water-soluble tetrazolium (WST) and colony formation assays were conducted to confirm the effect of fludioxonil on proliferation of mESCs. The effect of fludioxonil on the ability of mESCs to form mouse embryoid bodies (mEBs) was determined by the hanging drop assay, whereas the ability of cardiomyocyte differentiation in the early stage was evaluated by determining the beating ratio (ratio of the number of contracting cells to the number of attached EBs) of cardiomyocytes. The viability of mESCs was significantly decreased (less than 50 %) at 10-5 M fludioxonil. Results of the colony formation assay revealed suppressed colony formation at 10-5 M fludioxonil (about 50 % at 5 days). Furthermore, the expressions of cell-cycle related proteins, i.e., cyclin D1, cyclin E, p21 and p27, were altered and trending towards inhibiting cell growth. Exposure to fludioxonil also resulted in reduced size of the mEB and induced increasing expression levels of the pluripotency markers Oct4, Sox2 and Nanog. Development of the beating ratio in the process of differentiation to cardiomyocytes derived from mESCs was completely inhibited after exposure to 10-5 M fludioxonil during the early stage of differentiation (day 5), whereas the beating ratio gradually increased after 5-day treatment. Simultaneously, expressions of the cardiomyocyte-related proteins, Gata4, Hand1 and cTnI, were inhibited after exposure to 10-5 M fludioxonil. Taken together, these results imply that fludioxonil may impact on the developmental process of mESCs, particularly the cardiac lineage.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Dioxóis/toxicidade , Fungicidas Industriais/toxicidade , Pirróis/toxicidade , Animais , Linhagem Celular , Proliferação de Células , Corpos Embrioides/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Organogênese
15.
Cytotherapy ; 23(7): 599-607, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33975794

RESUMO

BACKGROUND AIMS: IL-2 is a potent cytokine that activates natural killer cells and CD8+ cytotoxic T lymphocytes (CTLs) and has been approved for the treatment of metastatic renal cell carcinoma and metastatic melanoma. However, the medical use of IL-2 is restricted because of its narrow therapeutic window and potential side effects, including the expansion of regulatory T cells (Tregs). METHODS: In this study, the authors investigated the complementary effects of transforming growth factor-ß2 (TGF-ß2) anti-sense oligodeoxynucleotide (TASO) on the immunotherapeutic potential of IL-2 in a melanoma-bearing humanized mouse model. RESULTS: The authors observed that the combination of TASO and IL-2 facilitated infiltration of CTLs into the tumor, thereby potentiating the tumor killing function of CTLs associated with increased granzyme B expression. In addition, TASO attenuated the increase in Tregs by IL-2 in the peripheral blood and spleen and also inhibited infiltration of Tregs into the tumor, which was partly due to decreased CCL22. Alteration of T-cell constituents at the periphery by TGF-ß2 inhibition combined with IL-2 might be associated with the synergistic augmentation of serum pro-inflammatory cytokines (such as interferon Î³ and tumor necrosis factor α) and decreased ratio of Tregs to CTLs in tumor tissues, which consequently results in significant inhibition of tumor growth CONCLUSIONS: These results indicate that the application of TASO improves IL-2-mediated anti-tumor immunity, thus implying that blockade of TGF-ß2 in combination with IL-2 may be a promising immunotherapeutic strategy for melanoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Melanoma , Oligonucleotídeos Antissenso , Animais , Imunoterapia , Interleucina-2 , Melanoma/terapia , Camundongos , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta2/antagonistas & inibidores , Fator de Crescimento Transformador beta2/genética , Fatores de Crescimento Transformadores
16.
Toxicology ; 451: 152695, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33516805

RESUMO

The toxic substances of cigarette smoke (CS) induce inflammatory responses in the lung by recruiting inflammatory cells. In this study, we investigated the effects of CS on the progression of lung disease in bleomycin (BLM) and lipopolysaccharide (LPS)-induced lung injury rat models. Briefly, rats were exposed to CS via inhalation (nose-only) for 28 consecutive days, for 4 h per day. Using an automatic video instillator, rats were administered a single dose of 2.5 mg/kg BLM (day 1) or 0.5 mg/kg LPS (day 26), prepared in 50 µL phosphate-buffered saline (PBS) solution. Examination of the bronchoalveolar lavage fluid (BALF) revealed that the number of neutrophils increased in a concentration-dependent manner of CS. Exposure to CS also enhanced the expression of cytokines, i.e., CCL2 (MCP-1), CCL3 (MIP-1α), CXCL2 (CINC3), CXCL10 (IP-10), TNF-α, IFN-γ, IL-2, IL-4 in the BALF of the vehicle (VC) and BLM groups in a concentration-dependent manner. In particular, the expressions of CCL2, CXCL10 and TNF-α were remarkably upregulated in the BLM + CS 300 treatment as compared to VC, while there were no differences in these cytokine levels in the serum following CS exposure. Exposure to CS resulted in compacted alveolar spaces and macrophage aggregation in the lung tissues following BLM and LPS treatments. Compared to VC, pulmonary fibrosis and chronic inflammation of bronchioloalveoli were observed in the BLM + CS treatment and inflammatory cell infiltration of bronchioloalveoli was observed in the LPS + CS treatment in a concentration-dependent manner by CS. The expression levels of CCL2 and IFN-γ in the lung tissues were increased similar to the levels obtained in BALF, in a concentration-dependent manner by CS. Taken together, these results indicate that repeated exposure to CS may exacerbate the lung injury initially caused by BLM and LPS.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Bleomicina/toxicidade , Fumar Cigarros/efeitos adversos , Exposição por Inalação/efeitos adversos , Lipopolissacarídeos/toxicidade , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Animais , Antibióticos Antineoplásicos/toxicidade , Fumar Cigarros/patologia , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
17.
Food Chem Toxicol ; 149: 112000, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33484789

RESUMO

Fenhexamid (Fen), a fungicide used to treat gray mold of fruits and vegetables, is reported to function as an endocrine disrupting chemical via the estrogen receptors (ER), despite low-toxicity of the pesticide. In this study, we elucidated that the disrupting effects of Fen are exerted via the ER and phosphatidylinositol 3-kinase (PI3K) pathways in breast cancer models. The WST assay, live cell monitoring, cell cycle analysis, colony formation assay, apoptotic analysis by JC-1 dyeing, and Western blot analysis were applied in ER positive MCF-7 and ER negative MDA-MB-231 breast cancer cells, after exposure to 17ß-estradiol (E2), Fen, ICI 182,780 (ICI; an ER antagonist) and/or Pictilisib (Pic; a PI3K inhibitor). Exposure to E2 and Fen induced the cell growth and survival ability of MCF-7 cells by increasing the S-phase cells and regulating the cell cycle-related proteins (Cyclin D1 and E1, p21 and p27). In addition, E2 and Fen treatment resulted in elevated levels of the survival-related proteins (Survivin and PCNA), and inhibited apoptosis by increasing the mitochondrial membrane potential and regulating the apoptosis-related proteins (BAX, BCL-2, and Caspase-9). These changes were reversed to the same level as the control group when exposed to their respective inhibitors, thereby indicating that the changes are exerted via the ER and PI3K pathways. In particular, co-treatment with these inhibitors induced greater inhibition than single treatment. Conversely, no alterations were observed in the ER-negative MDA-MB-231 breast cancer cells. Taken together, these results indicate that Fen promotes the growth of breast cancer cells via the ER and/or PI3K pathways, similar to the E2 mechanism. Although a relatively safe pesticide, Fen possibly exerts its influence as an endocrine disrupting chemical in ER-positive breast cancer cells via the ER and PI3K pathways.


Assuntos
Amidas/toxicidade , Neoplasias da Mama , Sobrevivência Celular/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Estrogênio/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Estrogênio/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
19.
Reprod Toxicol ; 95: 75-85, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32454085

RESUMO

Maternal smoking during the perinatal period is linked to adverse neonatal outcomes such as low birth weight and birth defects. Numerous studies have shown that cigarette smoke or nicotine exposure has a widespread effect on fetal nerve development. However, there exists a lack of understanding of what specific changes occur at the cellular level on persistent exposure to cigarette smoke during the differentiation of embryonic stem cells (ESCs) into neural cells. We previously investigated the effects of cigarette smoke extract (CSE) and its major component, nicotine, on the neural differentiation of mouse embryonic stem cells (mESCs). Differentiation of mESCs into neural progenitor cells (NPCs) or neural crest cells (NCCs) was induced with chemically defined media, and the cells were continuously exposed to CSE or nicotine during neural differentiation and development. Disturbed balance of the pluripotency state was observed in the NPCs, with consequent inhibition of neurite outgrowth and glial fibrillary acidic protein (Gfap) expression. These inhibitions correlated with the altered expression of proteins involved in the Notch-1 signaling pathways. The migration ability of NCCs was significantly decreased by CSE or nicotine exposure, which was associated with reduced protein expression of migration-related proteins. Taken together, we concluded that CSE and nicotine inhibit differentiation of mESCs into NPCs or NCCs, and may disrupt functional development of neural cells. These results imply that cigarette smoking during the perinatal period potentially inhibits neural differentiation and development of ESCs cells, leading to neonatal abnormal brain development and behavioral abnormalities.


Assuntos
Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Nicotiana , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Animais , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Environ Toxicol ; 35(1): 66-77, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31507073

RESUMO

The heart is the first organ formed in the developing fetus, and abnormal development of the heart is a major cause of fetal death. The adverse effects of cigarette smoke on the heart have been well established, but it is not well understood how cigarette smoke components regulate signaling molecules and cardiac specific functions during the early differentiation stage of the embryonic heart. In this study, we identified changes in the size of mouse embryoid bodies (mEBs) in response to treatment with cigarette smoke extract (CSE) via regulation of HDAC2, p53, p21, and cyclin D1 protein expression, which are cardiac differentiation and cell-cycle markers, respectively. In addition, exposure of mouse embryonic stem cells (mESCs) to cigarette smoke components inhibited myocardial differentiation and development through the expression of HDAC1, HDAC2, GATA4, NKX2-5, TBX5, HAND1, and Troponin I. Long-term exposure studies showed that CSE and nicotine may delay the development of mouse cardiomyocytes from mESCs and inhibit the contractibility, which is a fundamental function of the heart. Taken together, these findings suggest that cigarette smoke components, including nicotine, may affect abnormal myocardial differentiation and development.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Nicotiana/toxicidade , Fumaça/efeitos adversos , Animais , Ciclo Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Histona Desacetilase 2/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fumar/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA