Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Cell Stem Cell ; 31(8): 1145-1161.e15, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772377

RESUMO

Aging generally predisposes stem cells to functional decline, impairing tissue homeostasis. Here, we report that hematopoietic stem cells (HSCs) acquire metabolic resilience that promotes cell survival. High-resolution real-time ATP analysis with glucose tracing and metabolic flux analysis revealed that old HSCs reprogram their metabolism to activate the pentose phosphate pathway (PPP), becoming more resistant to oxidative stress and less dependent on glycolytic ATP production at steady state. As a result, old HSCs can survive without glycolysis, adapting to the physiological cytokine environment in bone marrow. Mechanistically, old HSCs enhance mitochondrial complex II metabolism during stress to promote ATP production. Furthermore, increased succinate dehydrogenase assembly factor 1 (SDHAF1) in old HSCs, induced by physiological low-concentration thrombopoietin (TPO) exposure, enables rapid mitochondrial ATP production upon metabolic stress, thereby improving survival. This study provides insight into the acquisition of resilience through metabolic reprogramming in old HSCs and its molecular basis to ameliorate age-related hematopoietic abnormalities.


Assuntos
Trifosfato de Adenosina , Células-Tronco Hematopoéticas , Mitocôndrias , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Animais , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Camundongos , Senescência Celular , Camundongos Endogâmicos C57BL , Glicólise , Envelhecimento/metabolismo , Estresse Oxidativo
2.
Front Immunol ; 15: 1401294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720899

RESUMO

Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in trans on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in cis, but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in cis and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells. We identified a lipid-binding motif in the juxtamembrane region of Ly49Q and found that Ly49Q organized functional membrane domains comprising sphingolipids via sulfatide binding. Ly49Q recruited actin-remodeling molecules to an immunoreceptor tyrosine-based inhibitory motif, which enabled the sphingolipid-enriched membrane domain to mediate complicated actin remodeling at the lamellipodia and phagosome membranes during phagocytosis. Thus, Ly49Q facilitates integrative regulation of proteins and lipid species to construct a cell type-specific membrane platform. Other Ly49 members possess lipid binding motifs; therefore, membrane platform organization may be a primary role of some NK cell receptors.


Assuntos
Esfingolipídeos , Animais , Humanos , Esfingolipídeos/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Fagocitose , Fagócitos/imunologia , Fagócitos/metabolismo , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Membrana Celular/metabolismo , Ligação Proteica
3.
Elife ; 122024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573813

RESUMO

Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.


Assuntos
Glicólise , Fosfofrutoquinase-2 , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Anaerobiose , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Fosforilação Oxidativa , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
4.
Stem Cell Reports ; 18(5): 1211-1226, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37059101

RESUMO

Soft tissue sarcomas (STSs) are a heterogeneous group of tumors that originate from mesenchymal cells. p53 is frequently mutated in human STS. In this study, we found that the loss of p53 in mesenchymal stem cells (MSCs) mainly causes adult undifferentiated soft tissue sarcoma (USTS). MSCs lacking p53 show changes in stem cell properties, including differentiation, cell cycle progression, and metabolism. The transcriptomic changes and genetic mutations in murine p53-deficient USTS mimic those seen in human STS. Furthermore, single-cell RNA sequencing revealed that MSCs undergo transcriptomic alterations with aging-a risk factor for certain types of USTS-and that p53 signaling decreases simultaneously. Moreover, we found that human STS can be transcriptomically classified into six clusters with different prognoses, different from the current histopathological classification. This study paves the way for understanding MSC-mediated tumorigenesis and provides an efficient mouse model for sarcoma studies.


Assuntos
Células-Tronco Mesenquimais , Sarcoma , Adulto , Animais , Humanos , Camundongos , Carcinogênese/patologia , Transformação Celular Neoplásica/metabolismo , Células-Tronco Mesenquimais/metabolismo , Sarcoma/genética , Sarcoma/metabolismo , Sarcoma/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Genes Cells ; 27(2): 145-151, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34918430

RESUMO

Limited oxygen availability impairs normal body growth, although the underlying mechanisms are not fully understood. In Drosophila, hypoxic responses in the larval fat body (FB) disturb the secretion of insulin-like peptides from the brain, inhibiting body growth. However, the cell-autonomous effects of hypoxia on the insulin-signaling pathway in larval FB have been underexplored. In this study, we aimed to examine the effects of overexpression of Sima, a Drosophila hypoxia-inducible factor-1 (HIF-1) α homolog and a key component of HIF-1 transcription factor essential for hypoxic adaptation, on the insulin-signaling pathway in larval FB. Forced expression of Sima in FB reduced the larval body growth with reduced Akt phosphorylation levels in FB cells and increased hemolymph sugar levels. Sima-mediated growth inhibition was reversed by overexpression of TOR or suppression of FOXO. After Sima overexpression, larvae showed higher expression levels of Tribbles, a negative regulator of Akt activity, and a simultaneous knockdown of Tribbles completely abolished the effects of Sima on larval body growth. Furthermore, a reporter analysis revealed Tribbles as a direct target gene of Sima. These results suggest that Sima in FB evokes Tribbles-mediated insulin resistance and consequently protects against aberrant insulin-dependent larval body growth under hypoxia.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Proteínas de Drosophila , Drosophila , Proteínas Serina-Treonina Quinases , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Corpo Adiposo/metabolismo , Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Larva/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
6.
Nat Immunol ; 22(11): 1391-1402, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34686865

RESUMO

Epithelial cells have an ability termed 'cell competition', which is an immune surveillance-like function that extrudes precancerous cells from the epithelial layer, leading to apoptosis and clearance. However, it remains unclear how epithelial cells recognize and extrude transformed cells. Here, we discovered that a PirB family protein, leukocyte immunoglobulin-like receptor B3 (LILRB3), which is expressed on non-transformed epithelial cells, recognizes major histocompatibility complex class I (MHC class I) that is highly expressed on transformed cells. MHC class I interaction with LILRB3 expressed on normal epithelial cells triggers an SHP2-ROCK2 pathway that generates a mechanical force to extrude transformed cells. Removal of transformed cells occurs independently of natural killer (NK) cell or CD8+ cytotoxic T cell-mediated activity. This is a new mechanism in that the immunological ligand-receptor system generates a mechanical force in non-immune epithelial cells to extrude precancerous cells in the same epithelial layer.


Assuntos
Antígenos CD/metabolismo , Apoptose , Competição entre as Células , Células Epiteliais/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias Pulmonares/metabolismo , Lesões Pré-Cancerosas/metabolismo , Receptores Imunológicos/metabolismo , Animais , Antígenos CD/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Cães , Células Epiteliais/imunologia , Células Epiteliais/patologia , Células HaCaT , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Células Madin Darby de Rim Canino , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/imunologia , Lesões Pré-Cancerosas/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Células RAW 264.7 , Receptores Imunológicos/genética , Estresse Mecânico , Quinases Associadas a rho/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385317

RESUMO

The amino acid and oligopeptide transporter Solute carrier family 15 member A4 (SLC15A4), which resides in lysosomes and is preferentially expressed in immune cells, plays critical roles in the pathogenesis of lupus and colitis in murine models. Toll-like receptor (TLR)7/9- and nucleotide-binding oligomerization domain-containing protein 1 (NOD1)-mediated inflammatory responses require SLC15A4 function for regulating the mechanistic target of rapamycin complex 1 (mTORC1) or transporting L-Ala-γ-D-Glu-meso-diaminopimelic acid, IL-12: interleukin-12 (Tri-DAP), respectively. Here, we further investigated the mechanism of how SLC15A4 directs inflammatory responses. Proximity-dependent biotin identification revealed glycolysis as highly enriched gene ontology terms. Fluxome analyses in macrophages indicated that SLC15A4 loss causes insufficient biotransformation of pyruvate to the tricarboxylic acid cycle, while increasing glutaminolysis to the cycle. Furthermore, SLC15A4 was required for M1-prone metabolic change and inflammatory IL-12 cytokine productions after TLR9 stimulation. SLC15A4 could be in close proximity to AMP-activated protein kinase (AMPK) and mTOR, and SLC15A4 deficiency impaired TLR-mediated AMPK activation. Interestingly, SLC15A4-intact but not SLC15A4-deficient macrophages became resistant to fluctuations in environmental nutrient levels by limiting the use of the glutamine source; thus, SLC15A4 was critical for macrophage's respiratory homeostasis. Our findings reveal a mechanism of metabolic regulation in which an amino acid transporter acts as a gatekeeper that protects immune cells' ability to acquire an M1-prone metabolic phenotype in inflammatory tissues by mitigating metabolic stress.


Assuntos
Regulação da Expressão Gênica/fisiologia , Macrófagos/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas do Tecido Nervoso/metabolismo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Células Dendríticas/metabolismo , Desoxiglucose/análogos & derivados , Desoxiglucose/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Macrófagos/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Oligodesoxirribonucleotídeos/farmacologia
8.
J Biol Chem ; 296: 100563, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33745970

RESUMO

Hematopoietic stem cells (HSCs) and their progeny sustain lifetime hematopoiesis. Aging alters HSC function, number, and composition and increases risk of hematological malignancies, but how these changes occur in HSCs remains unclear. Signaling via p38 mitogen-activated kinase (p38MAPK) has been proposed as a candidate mechanism underlying induction of HSC aging. Here, using genetic models of both chronological and premature aging, we describe a multimodal role for p38α, the major p38MAPK isozyme in hematopoiesis, in HSC aging. We report that p38α regulates differentiation bias and sustains transplantation capacity of HSCs in the early phase of chronological aging. However, p38α decreased HSC transplantation capacity in the late progression phase of chronological aging. Furthermore, codeletion of p38α in mice deficient in ataxia-telangiectasia mutated, a model of premature aging, exacerbated aging-related HSC phenotypes seen in ataxia-telangiectasia mutated single-mutant mice. Overall, these studies provide new insight into multiple functions of p38MAPK, which both promotes and suppresses HSC aging context dependently.


Assuntos
Envelhecimento/patologia , Diferenciação Celular , Senescência Celular , Células-Tronco Hematopoéticas/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/fisiologia , Envelhecimento/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Proliferação de Células , Feminino , Hematopoese , Células-Tronco Hematopoéticas/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
9.
Sci Rep ; 10(1): 21053, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273499

RESUMO

Phosphorescence lifetime imaging microscopy (PLIM) combined with an oxygen (O2)-sensitive luminescent probe allows for high-resolution O2 imaging of living tissues. Herein, we present phosphorescent Ir(III) complexes, (btp)2Ir(acac-DM) (Ir-1) and (btp-OH)3Ir (Ir-2), as useful O2 probes for PLIM measurement. These small-molecule probes were efficiently taken up into cultured cells and accumulated in specific organelles. Their excellent cell-permeable properties allowed for efficient staining of three-dimensional cell spheroids, and thereby phosphorescence lifetime measurements enabled the evaluation of the O2 level and distribution in spheroids, including the detection of alterations in O2 levels by metabolic stimulation with an effector. We took PLIM images of hepatic tissues of living mice by intravenously administrating these probes. The PLIM images clearly visualized the O2 gradient in hepatic lobules with cellular-level resolution, and the O2 levels were derived based on calibration using cultured cells; the phosphorescence lifetime of Ir-1 gave reasonable O2 levels, whereas Ir-2 exhibited much lower O2 levels. Intravenous administration of NH4Cl to mice caused the hepatic tissues to experience hypoxia, presumably due to O2 consumption to produce ATP required for ammonia detoxification, suggesting that the metabolism of the probe molecule might affect liver O2 levels.


Assuntos
Espaço Intracelular/metabolismo , Irídio/química , Fígado/metabolismo , Luminescência , Microscopia Confocal , Sondas Moleculares/química , Imagem Óptica , Oxigênio/metabolismo , Animais , Células HT29 , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos BALB C , Esferoides Celulares/metabolismo
10.
iScience ; 23(7): 101327, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32688284

RESUMO

Previous studies have revealed that, at the initial step of carcinogenesis, transformed cells are often eliminated from epithelia via cell competition with the surrounding normal cells. In this study, we performed cell competition-based high-throughput screening for chemical compounds using cultured epithelial cells and confocal microscopy. PLX4720 was identified as a hit compound that promoted apical extrusion of RasV12-transformed cells surrounded by normal epithelial cells. Knockdown/knockout of ZAK, a target of PLX4720, substantially enhanced the apical elimination of RasV12 cells in vitro and in vivo. ZAK negatively modulated the accumulation or activation of multiple cell competition regulators. Moreover, PLX4720 treatment promoted apical elimination of RasV12-transformed cells in vivo and suppressed the formation of potentially precancerous tumors. This is the first report demonstrating that a cell competition-promoting chemical drug facilitates apical elimination of transformed cells in vivo, providing a new dimension in cancer preventive medicine.

11.
Monoclon Antib Immunodiagn Immunother ; 39(1): 23-26, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31916900

RESUMO

Stromal cell-derived factor-2 (SDF-2) is reportedly involved in multiple endoplasmic reticulum (ER) functions, including the misfolded protein catabolic process, protein glycosylation, and ER protein quality control. However, the precise molecular and cellular functions of SDF-2 remain unknown. Previously, we discovered that SDF-2 mediates acquired resistance to oxaliplatin in human gastric cancer cells. In this study, we have generated SDF-2-specific monoclonal antibodies (mAbs), using the rat medial iliac lymph node method, as a tool to explore novel mechanisms of oxaliplatin resistance. The antibodies detected endogenous human SDF-2 in immunoblotting analyses. In addition, immunoprecipitation analyses revealed the availability of these antibodies for human SDF-2. Thus, these mAbs will be available to elucidate molecular and cellular functions of SDF-2 in cancer cells.


Assuntos
Anticorpos Monoclonais/imunologia , Proteínas/imunologia , Animais , Immunoblotting , Imunoprecipitação , Linfonodos/imunologia , Linfonodos/metabolismo , Oxaliplatina , Ratos
12.
Biochem Biophys Res Commun ; 524(1): 184-189, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31982132

RESUMO

Plasma aldosterone concentration increases in proportion to the severity of heart failure, even during treatment with renin-angiotensin system inhibitors. This study investigated alternative regulatory mechanisms of aldosterone production that are significant in heart failure. Dahl salt-sensitive rats on a high-salt diet, a rat model of heart failure with cardio-renal syndrome, had high plasma aldosterone levels and elevated ß3-adrenergic receptor expression in hypoxic zona glomerulosa cells. In H295R cells (a human adrenocortical cell line), hypoxia-induced ß3-adrenergic receptor expression. Hypoxia-mediated ß3-adrenergic receptor expression augmented aldosterone production by facilitating hydrolysis of lipid droplets though ERK-mediated phosphorylation of hormone-sensitive lipase, also known as cholesteryl ester hydrolase. Hypoxia also accelerated the synthesis of cholesterol esters by acyl-CoA:cholesterol acyltransferase, thereby increasing the cholesterol ester content in lipid droplets. Thus, hypoxia enhanced aldosterone production by zona glomerulosa cells via promotion of the accumulation and hydrolysis of cholesterol ester in lipid droplets. In conclusion, hypoxic zona glomerulosa cells with heart failure show enhanced aldosterone production via increased catecholamine responsiveness and activation of cholesterol trafficking, irrespective of the renin-angiotensin system.


Assuntos
Córtex Suprarrenal/patologia , Aldosterona/biossíntese , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Hipóxia/metabolismo , Hipóxia/patologia , Córtex Suprarrenal/efeitos dos fármacos , Animais , Síndrome Cardiorrenal/complicações , Catecolaminas/farmacologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Colesterol/metabolismo , Modelos Animais de Doenças , Humanos , Hipóxia/complicações , Masculino , Fosforilação/efeitos dos fármacos , Ratos Endogâmicos Dahl , Receptores Adrenérgicos beta 3/metabolismo , Esterol Esterase/metabolismo , Zona Glomerulosa/metabolismo , Zona Glomerulosa/patologia
13.
Int Immunol ; 31(12): 781-793, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31201418

RESUMO

Macrophages are major components of tuberculosis (TB) granulomas and are responsible for host defenses against the intracellular pathogen, Mycobacterium tuberculosis. We herein showed the strong expression of hypoxia-inducible factor-1α (HIF-1α) in TB granulomas and more rapid death of HIF-1α-conditional knockout mice than wild-type (WT) mice after M. tuberculosis infection. Although interferon-γ (IFN-γ) is a critical host-protective cytokine against intracellular pathogens, HIF-1-deficient macrophages permitted M. tuberculosis growth even after activation with IFN-γ. These results prompted us to investigate the role of HIF-1α in host defenses against infection. We found that the expression of lactate dehydrogenase-A (LDH-A) was controlled by HIF-1α in M. tuberculosis-infected macrophages IFN-γ independently. LDH-A is an enzyme that converts pyruvate to lactate and we found that the intracellular level of pyruvate in HIF-1α-deficient bone marrow-derived macrophages (BMDMs) was significantly higher than in WT BMDMs. Intracellular bacillus replication was enhanced by an increase in intracellular pyruvate concentrations, which were decreased by LDH-A. Mycobacteria in phagosomes took up exogenous pyruvate more efficiently than glucose, and used it as the feasible carbon source for intracellular growth. These results demonstrate that HIF-1α prevents the hijacking of pyruvate in macrophages, making it a fundamental host-protective mechanism against M. tuberculosis.


Assuntos
Glicólise , Macrófagos/metabolismo , Tuberculose/metabolismo , Animais , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/metabolismo
14.
PLoS One ; 14(3): e0214139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30897181

RESUMO

The ductus arteriosus, an essential embryonic blood vessel between the pulmonary artery and the descending aorta, constricts after birth or hatching and eventually closes to terminate embryonic circulation. Chicken embryos have two long ductus arteriosi, which anatomically differ from mammal ductus arteriosus. Each long ductus arteriosus is divided into two parts: the pulmonary artery-sided and descending aorta-sided ductus arteriosi. Although the pulmonary artery-sided and descending aorta-sided ductus arteriosi have distinct functional characteristics, such as oxygen responsiveness, the difference in their transcriptional profiles has not been investigated. We performed a DNA microarray analysis (GSE 120116 at NCBI GEO) with pooled tissues from the chicken pulmonary artery-sided ductus arteriosus, descending aorta-sided ductus arteriosus, and aorta at the internal pipping stage. Although several known ductus arteriosus-dominant genes such as tfap2b were highly expressed in the pulmonary artery-sided ductus arteriosus, we newly found genes that were dominantly expressed in the chicken pulmonary artery-sided ductus arteriosus. Interestingly, cluster analysis showed that the expression pattern of the pulmonary artery-sided ductus arteriosus was closer to that of the descending aorta-sided ductus arteriosus than that of the aorta, whereas the morphology of the descending aorta-sided ductus arteriosus was closer to that of the aorta than that of the pulmonary artery-sided ductus arteriosus. Subsequent pathway analysis with DAVID bioinformatics resources revealed that the pulmonary artery-sided ductus arteriosus showed enhanced expression of the genes involved in melanogenesis and tyrosine metabolism compared with the descending aorta-sided ductus arteriosus, suggesting that tyrosinase and the related genes play an important role in the proper differentiation of neural crest-derived cells during vascular remodeling in the ductus arteriosus. In conclusion, the transcription profiles of the chicken ductus arteriosus provide new insights for investigating the mechanism of ductus arteriosus closure.


Assuntos
Embrião de Galinha/metabolismo , Galinhas/genética , Canal Arterial/metabolismo , Transcriptoma , Animais , Embrião de Galinha/embriologia , Embrião de Galinha/ultraestrutura , Canal Arterial/embriologia , Canal Arterial/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética
15.
Heart Vessels ; 34(3): 545-555, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30386918

RESUMO

Fatty acid (FA) oxidation is impaired and glycolysis is promoted in the damaged heart. However, the factor(s) in the early stages of myocardial metabolic impairment remain(s) unclear. C57B6 mice were subcutaneously administered monocrotaline (MCT) in doses of 0.3 mg/g body weight twice a week for 3 or 6 weeks. Right and left ventricles at 3 and 6 weeks after administration were subjected to capillary electrophoresis-mass spectrometry metabolomic analysis. We also examined mRNA and protein levels of key metabolic molecules. Although no evidence of PH and right ventricular failure was found in the MCT-administered mice by echocardiographic and histological analyzes, the expression levels of stress markers such as TNFα and IL-6 were increased in right and left ventricles even at 3 weeks, suggesting that there was myocardial damage. Metabolites in the tricarboxylic acid (TCA) cycle were decreased and those in glycolysis were increased at 6 weeks. The expression levels of FA oxidation-related factors were decreased at 6 weeks. The phosphorylation level of pyruvate dehydrogenase (PDH) was significantly decreased at 3 weeks. FA oxidation and the TCA cycle were down-regulated, whereas glycolysis was partially up-regulated by MCT-induced myocardial damage. PDH activation preceded these alterations, suggesting that PDH activation is one of the earliest events to compensate for a subtle metabolic impairment from myocardial damage.


Assuntos
Cardiomiopatias/metabolismo , Regulação para Baixo , Ácidos Graxos/metabolismo , Ventrículos do Coração/metabolismo , Miocárdio/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Animais , Western Blotting , Cardiomiopatias/induzido quimicamente , Modelos Animais de Doenças , Ventrículos do Coração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monocrotalina/toxicidade , Miocárdio/patologia , Oxirredução
16.
Sci Rep ; 8(1): 14230, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242180

RESUMO

Adaptive responses to hypoxia regulate hepatic lipid metabolism, but their consequences in nonalcoholic fatty liver disease (NAFLD) are largely unknown. Here, we show that hypoxia inducible factor-1 (HIF-1), a key determinant of hypoxic adaptations, prevents excessive hepatic lipid accumulation in the progression of NAFLD. When exposed to a choline-deficient diet (CDD) for 4 weeks, the loss of hepatic Hif-1α gene accelerated liver steatosis with enhanced triglyceride accumulation in the liver compared to wild-type (WT) livers. Expression of genes involved in peroxisomal fatty acid oxidation was suppressed significantly in CDD-treated WT livers, whereas this reduction was further enhanced in Hif-1α-deficient livers. A lack of induction and nuclear accumulation of lipin1, a key regulator of the PPARα/PGC-1α pathway, could be attributed to impaired peroxisomal ß-oxidation in Hif-1α-deficient livers. The lipin1-mediated binding of PPARα to the acyl CoA oxidase promoter was markedly reduced in Hif-1α-deficient mice exposed to a CDD. Moreover, forced Lipin1 expression restored the aberrant lipid accumulation caused by Hif-1α deletion in cells incubated in a choline-deficient medium. These results strongly suggest that HIF-1 plays a crucial role in the regulation of peroxisomal lipid metabolism by activating the expression and nuclear accumulation of lipin1 in NAFLD.


Assuntos
Colina/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Células Cultivadas , Dieta , Hepatócitos/metabolismo , Hipóxia/metabolismo , Masculino , Camundongos , PPAR alfa/metabolismo , Triglicerídeos/metabolismo
17.
Elife ; 72018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30059007

RESUMO

Under chronic or severe liver injury, liver progenitor cells (LPCs) of biliary origin are known to expand and contribute to the regeneration of hepatocytes and cholangiocytes. This regeneration process is called ductular reaction (DR), which is accompanied by dynamic remodeling of biliary tissue. Although the DR shows apparently distinct mode of biliary extension depending on the type of liver injury, the key regulatory mechanism remains poorly understood. Here, we show that Lutheran (Lu)/Basal cell adhesion molecule (BCAM) regulates the morphogenesis of DR depending on liver disease models. Lu+ and Lu- biliary cells isolated from injured liver exhibit opposite phenotypes in cell motility and duct formation capacities in vitro. By overexpression of Lu, Lu- biliary cells acquire the phenotype of Lu+ biliary cells. Lu-deficient mice showed severe defects in DR. Our findings reveal a critical role of Lu in the control of phenotypic heterogeneity of DR in distinct liver disease models.


Assuntos
Ductos Biliares/metabolismo , Ductos Biliares/fisiologia , Moléculas de Adesão Celular/metabolismo , Regeneração Hepática , Sistema do Grupo Sanguíneo Lutheran/metabolismo , Glicoproteínas de Membrana/metabolismo , Animais , Especificidade de Anticorpos/imunologia , Movimento Celular/genética , Separação Celular , Colina , Dieta , Modelos Animais de Doenças , Molécula de Adesão da Célula Epitelial/metabolismo , Regulação da Expressão Gênica , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Laminina/metabolismo , Fígado/metabolismo , Regeneração Hepática/genética , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
18.
Lipids Health Dis ; 17(1): 135, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875018

RESUMO

BACKGROUND: Aging is known to be associated with increased risk of lipid disorders related to the development of type 2 diabetes. Recent evidence revealed that change of lipid molecule species in blood is associated with the risk of type 2 diabetes. However, changes in lipid molecular species induced by aging are still unknown. We assessed the effects of age on the serum levels of lipid molecular species as determined by lipidomics analysis. METHODS: Serum samples were collected from ten elderly men (71.7 ± 0.5 years old) and women (70.2 ± 1.0 years old), ten young men (23.9 ± 0.4 years old), and women (23.9 ± 0.7 years old). Serum levels of lipid molecular species were determined by liquid chromatography mass spectrometry-based lipidomics analysis. RESULTS: Our mass spectrometry analysis revealed increases in the levels of multiple triacylglycerol molecular species in the serum of elderly men and women. Moreover, serum levels of total ester-linked phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were increased by aging. In contrast, serum levels of specific ether-linked PC and PE molecular species were lower in elderly individuals than in young individuals. CONCLUSIONS: Our finding indicates that specific lipid molecular species, such as ether- and ester- linked phospholipids, may be selectively altered by aging.


Assuntos
Envelhecimento/sangue , Ácidos Graxos não Esterificados/sangue , Fosfatidilcolinas/sangue , Fosfatidiletanolaminas/sangue , Triglicerídeos/sangue , Adulto , Idoso , Cromatografia Líquida , Feminino , Humanos , Japão , Metabolismo dos Lipídeos/fisiologia , Masculino , Espectrometria de Massas , Metaboloma/fisiologia
19.
Hepatol Commun ; 2(5): 571-581, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29761172

RESUMO

Acetaminophen (APAP)-induced liver injury is closely associated with acute hepatic inflammation. Hypoxia-inducible factor-1 (HIF-1) is activated during immunological processes and regulates gene expressions in various types of immune cells. Although HIF-1 controls the differentiation and functions of conventional T cells in chronic inflammation, the pathological importance of HIF-1 in innate-like T cells during acute inflammation remains unknown. Here, we investigated the role of HIF-1 in innate-like γδ T cells during APAP-induced acute liver injury. In response to APAP administration, T-cell-specific Hif-1α gene knockout mice sustained severe liver damage compared to wild-type control mice but without any impacts on the initial hepatic insult. This severe liver damage was accompanied by excessive neutrophil infiltration into the liver, increased serum interleukin (IL)-17A levels, and increased hepatic expressions of C-X-C chemokine ligand (Cxcl) 1 and Cxcl2. Neutrophil depletion and IL-17A neutralization completely abolished the aggravated phenotypes in T-cell-specific Hif-1α gene knockout mice. Loss of the Hif-1α gene enhanced the aberrant accumulation of IL-17A-producing innate-like γδ T cells in the affected liver with no apparent effects on their IL-17A-producing ability. Adoptive transfer of Hif-1α-deficient splenic γδ T cells into recombination activating gene 2 (Rag2)-deficient mice aggravated APAP-induced liver injury with increased neutrophil accumulation in the liver compared to that of wild-type γδ T cells. Furthermore, Hif-1α-deficient γδ T cells selectively showed aberrantly enhanced migratory ability. This ability was totally abolished by treatment with the mitochondrial adenosine triphosphate synthase inhibitor oligomycin. Conclusion: Deletion of Hif-1α gene in T cells aggravates APAP-induced acute inflammatory responses by enhancing aberrant innate-like γδ T-cell recruitment, thereby increasing excessive neutrophil infiltration into the liver. (Hepatology Communications 2018;2:571-581).

20.
Exp Cell Res ; 359(1): 86-93, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28827061

RESUMO

The mitochondria-associated ER membrane (MAM) is a specialized subdomain of ER that physically connects with mitochondria. Although disruption of inter-organellar crosstalk via the MAM impairs cellular homeostasis, its pathological significance in insulin resistance in type 2 diabetes mellitus remains unclear. Here, we reveal the importance of reduced MAM formation in the induction of fatty acid-evoked insulin resistance in hepatocytes. Palmitic acid (PA) repressed insulin-stimulated Akt phosphorylation in HepG2 cells within 12h. Treatment with an inhibitor of the ER stress response failed to restore PA-mediated suppression of Akt activation. Mitochondrial reactive oxygen species (ROS) production did not increase in PA-treated cells. Even short-term exposure (3h) to PA reduced the calcium flux from ER to mitochondria, followed by a significant decrease in MAM contact area, suggesting that PA suppressed the functional interaction between ER and mitochondria. Forced expression of mitofusin-2, a critical component of the MAM, partially restored MAM contact area and ameliorated the PA-elicited suppression of insulin sensitivity with Ser473 phosphorylation of Akt selectively improved. These results suggest that loss of proximity between ER and mitochondria, but not perturbation of homeostasis in the two organelles individually, plays crucial roles in PA-evoked Akt inactivation in hepatic insulin resistance.


Assuntos
Retículo Endoplasmático/metabolismo , Resistência à Insulina , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Ácido Palmítico/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , GTP Fosfo-Hidrolases , Células Hep G2 , Humanos , Insulina/farmacologia , Membranas Intracelulares/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA