Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Genet ; 68(3-4): 375-391, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35532798

RESUMO

The genomic analysis of industrially important bacteria can help in understanding their capability to withstand extreme environments and shed light on their metabolic capabilities. The whole genome of a previously reported broad temperature active lipase-producing Pseudomonas sp. HS6, isolated from snow-covered soil of the Sikkim Himalayan Region, was analyzed to understand the capability of the bacterium to withstand cold temperatures and study its lipolytic nature. Pseudomonas sp. HS6 was found to be psychrotolerant with an optimal growth temperature ranging between 25 and 30 °C, with the ability to grow at 5 °C. The genome harbours various cold-adaptation genes, such as cold-shock proteins, fatty acid alteration, and cold stress-tolerance genes, supporting the psychrotolerant nature of the organism. The comparative analysis of Pseudomonas sp. HS6 genome showed the presence of amino acid substitutions in genes that favor efficient functioning and flexibility at cold temperatures. Genome mining revealed the presence of four triacylglycerol lipases, among which the putative lipase 3 was highly similar to the broad temperature-active lipase purified and characterized in our previous study. In silico studies of putative lipase 3 revealed broad substrate specificity with partial and no inhibition of the enzyme activity in the presence of PMSF and orlistat. The presence of genes associated with cold adaptations and true lipases with activity at broad temperature and substrate specificity in the genome of Pseudomonas sp. HS6 makes this bacterium a suitable candidate for industrial applications.


Assuntos
Lipase , Pseudomonas , Temperatura Baixa , Genômica , Lipase/química , Lipase/genética , Lipase/metabolismo , Pseudomonas/genética , Siquim , Neve , Solo , Especificidade por Substrato
4.
Bioresour Technol ; 309: 123352, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32299046

RESUMO

The aim of this study was to explore novel source of lipase from biodiversity hot spot region of Sikkim with activity at broad temperature range for application in detergent industry. Among the isolates, Pseudomonas helmanticensis HS6 showed activity at wide range of temperatures was selected for lipase production. Statistical optimisation for enhanced production of lipase resulted in enhancement of lipase activity from 2.3 to 179.3 U/mg. Lipase was purified resulting in 18.78 fold purification, 5.58% yield and high specific activity of 3368 U/mg. The partially purified lipase was found to be active in wide range of temperature (5-80 °C) and pH (6-9), showing optimum activity at 50 °C at pH 7. Peptide sequences on mass spectrometric analysis of purified lipase showed similarity to lipase family protein of three species of Pseudomonas. Both crude and purified lipase retained residual activity of 40-80% after 3 h of incubation with commercial detergents suggesting its application in detergent industry.


Assuntos
Detergentes , Lipase , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Pseudomonas , Temperatura
5.
Bioengineered ; 11(1): 19-38, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31880190

RESUMO

The major drawback of chemical transformations for the production of 2, 5-furan dicarboxylic acid (FDCA) implies the usage of hazardous chemicals, high temperature and high pressure from nonrenewable resources. Alternate to chemical methods, biological methods are promising. Microbial FDCA production is improved through engineering approaches of media conditions, homologous and heterologous expression of genes, genetic and metabolic engineering, etc. The highest FDCA production of 41.29 g/L is observed by an engineered Raultella ornitholytica BF 60 from 35 g/L HMF in sodium phosphate buffer with a 95.14% yield in 72 h. Also, an enzyme cascade system of recombinant and wild enzymes like periplasmic aldehyde oxidase ABC, galactose oxidase M3-5, HRP and catalase have transformed 6.3 g/L HMF to 7.81 g/L FDCA in phosphate buffer with 100% yield in 6 h. Still, these processes are emerging for fulfilling the industrial needs due to the challenges in 'green FDCA production'.


Assuntos
Ácidos Dicarboxílicos/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Furanos/metabolismo , Engenharia Metabólica/tendências , Fermentação , Engenharia Metabólica/métodos
6.
Mol Biotechnol ; 61(8): 562-578, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31161300

RESUMO

Lactic acid bacteria (LAB) are functional starter cultures in food and dairy industry and are also regarded as power houses for bioprocess and fermentation technology. Due to extensive applications in food and medical applications, intensive research and developmental activities are going on throughout the world to understand the genomic and metabolic aspects during the past few decades. These LAB strains have significant role in production of value added chemicals and fuels from lignocellulosic biomass and other by-product streams establishing a circular bioeconomy. In this context, we discuss the physiology and genetics of crude glycerol dissimilation in lactic acid bacteria, the value added chemicals produced from biodiesel-derived crude glycerol. The overview of metabolic engineering strategies to improve the cellular traits and future perspectives in constructing cellulolytic/hemicellulolytic LAB strains to establish a renewable and sustainable cost-effective biorefinery is discussed.


Assuntos
Biocombustíveis/microbiologia , Genoma Bacteriano/genética , Glicerol/metabolismo , Lactobacillales , Engenharia Metabólica , Lactobacillales/genética , Lactobacillales/metabolismo
7.
Bioresour Technol ; 284: 155-160, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30928827

RESUMO

The aim of the present study was to develop an eco-friendly biological process for the production of 2,5-furan dicarboxylic acid (FDCA) from 5-hydroxy methylfurfuraldehyde (HMF) using microorganisms. Microorganisms were isolated from the soil samples and evaluated for its biotransformation efficiency. Among the isolates, Aspergillus flavus APLS-1 was found to be potent for efficient conversion of HMF to FDCA. The bioconversion parameters were optimized by Box-Behnken design. The optimization resulted in 67% conversion efficiency where 1 g/L HMF (8 mM) was transformed to 0.83 g/L (6.6 mM) FDCA in 14 days at pH6.5 with biomass size of 5.7 g/L and biomass age 60 h. This is the first report on Aspergillus sp., capable of detoxifying HMF and produces FDCA.


Assuntos
Aspergillus flavus/metabolismo , Ácidos Dicarboxílicos/metabolismo , Furanos/metabolismo , Biomassa , Biotransformação
8.
Bioresour Technol ; 282: 88-93, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30852336

RESUMO

Hydroxymethylfurfural (HMF) is an industrially important chemical which is a starting material in the production of plenty of platform chemicals. In this study, a complete biotransformation of HMF was achieved using a novel isolate, Acinetobacter oleivorans S27. This strain could tolerate up to 3000 mg/L of HMF concentration and convert to other furan derivatives. The conversion products includes high-value chemicals like 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), a known interleukin inhibitor and 2,5-furan dicarboxylic acid (FDCA), an alternate of terephthalic acid in polyester industries. The biotransformation efficiency was found to be 100%, as there is complete conversion of HMF to other chemicals. Most importantly, it is an environmental friendly process for the production of furan derivatives.


Assuntos
Acinetobacter/metabolismo , Furaldeído/análogos & derivados , Furanos/metabolismo , Biotransformação , Furaldeído/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA