Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18283, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880340

RESUMO

Tissue engineering is a promising alternative to current full thickness circumferential esophageal replacement methods. The aim of our study was to develop a clinical grade Decellularized Human Esophagus (DHE) for future clinical applications. After decontamination, human esophagi from deceased donors were placed in a bioreactor and decellularized with sodium dodecyl sulfate (SDS) and ethylendiaminetetraacetic acid (EDTA) for 3 days. The esophagi were then rinsed in sterile water and SDS was eliminated by filtration on an activated charcoal cartridge for 3 days. DNA was removed by a 3-hour incubation with DNase. A cryopreservation protocol was evaluated at the end of the process to create a DHE cryobank. The decellularization was efficient as no cells and nuclei were observed in the DHE. Sterility of the esophagi was obtained at the end of the process. The general structure of the DHE was preserved according to immunohistochemical and scanning electron microscopy images. SDS was efficiently removed, confirmed by a colorimetric dosage, lack of cytotoxicity on Balb/3T3 cells and mesenchymal stromal cell long term culture. Furthermore, DHE did not induce lymphocyte proliferation in-vitro. The cryopreservation protocol was safe and did not affect the tissue, preserving the biomechanical properties of the DHE. Our decellularization protocol allowed to develop the first clinical grade human decellularized and cryopreserved esophagus.


Assuntos
Matriz Extracelular , Alicerces Teciduais , Camundongos , Animais , Humanos , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Criopreservação , Dodecilsulfato de Sódio/química , Esôfago
2.
Adv Exp Med Biol ; 1345: 7-15, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34582010

RESUMO

In pathologies of the esophagus such as esophageal atresia, cancers and caustic injuries, methods for full thickness esophageal replacement require the sacrifice of healthy intra-abdominal organs such as the stomach and the colon. These methods are associated with high morbidity, mortality and poor functional results. The reconstruction of an esophageal segment by tissue engineering (TE) could answer this problem. For esophageal TE, this approach has been explored mainly by a combination of matrices and cells. In this chapter, we will discuss the studies on full organ esophageal decellularization, including the animal models, the methods of decellularization and recellularization.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Colo , Esôfago
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA