Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Virol J ; 21(1): 15, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200555

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which has led to an enormous burden on patient morbidity and mortality. The renin-angiotensin-aldosterone system (RAAS) plays a significant role in various pulmonary diseases. Since SARS-CoV-2 utilizes the angiotensin-converting enzyme (ACE)2 receptor to exert its virulence and pathogenicity, the RAAS is of particular importance in COVID 19. METHODS: Our preliminary study investigates retrospectively the influence of selected ACE-polymorphisms (I/D location at intron 16 in the B-coding sequence (rs4646994) and A-240T (rs 4291) at the A-promoter) as well as ACE1 and ACE2 serum levels on disease severity and the inflammatory response in inpatients and outpatients with COVID-19. RESULTS: Our study included 96 outpatients and 88 inpatients (65.9% male, mean age 60 years) with COVID-19 from April to December 2020 in four locations in Germany. Of the hospitalized patients, 88.6% participants were moderately ill (n = 78, 64% male, median age 60 years), and 11.4% participants were severely ill or deceased (n = 10, 90% male, median age 71 years). We found no polymorphism-related difference in disease, in age distribution, time to hospitalization and time of hospitalization for the inpatient group. ACE1 serum levels were significantly increased in the DD compared to the II polymorphism and in the TT compared to the AA polymorphism. There was no significant difference in ACE 1 serum levels l between moderately ill and severely ill patients. However, participants requiring oxygen supplementation had significantly elevated ACE1 levels compared to participants not requiring oxygen, with no difference in ACE2 levels whereas females had significantly higher ACE2 levels. CONCLUSIONS: Although there were no differences in the distribution of ACE polymorphisms in disease severity, we found increased proinflammatory regulation of the RAAS in patients with oxygen demand and increased serum ACE2 levels in women, indicating a possible enhanced anti-inflammatory immune response. CLINICAL TRIAL REGISTRATION: PreBiSeCov: German Clinical Trials Register, DRKS-ID: DRKS00021591, Registered on 27th April 2020.


Assuntos
COVID-19 , Sistema Renina-Angiotensina , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Enzima de Conversão de Angiotensina 2/genética , Mutagênese Insercional , Oxigênio , Peptidil Dipeptidase A/genética , Sistema Renina-Angiotensina/genética , Estudos Retrospectivos , SARS-CoV-2/genética
2.
Nat Microbiol ; 8(5): 860-874, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012419

RESUMO

Vaccines play a critical role in combating the COVID-19 pandemic. Future control of the pandemic requires improved vaccines with high efficacy against newly emerging SARS-CoV-2 variants and the ability to reduce virus transmission. Here we compare immune responses and preclinical efficacy of the mRNA vaccine BNT162b2, the adenovirus-vectored spike vaccine Ad2-spike and the live-attenuated virus vaccine candidate sCPD9 in Syrian hamsters, using both homogeneous and heterologous vaccination regimens. Comparative vaccine efficacy was assessed by employing readouts from virus titrations to single-cell RNA sequencing. Our results show that sCPD9 vaccination elicited the most robust immunity, including rapid viral clearance, reduced tissue damage, fast differentiation of pre-plasmablasts, strong systemic and mucosal humoral responses, and rapid recall of memory T cells from lung tissue after challenge with heterologous SARS-CoV-2. Overall, our results demonstrate that live-attenuated vaccines offer advantages over currently available COVID-19 vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Vacinas Atenuadas , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Vacina BNT162 , Pandemias , Mesocricetus
3.
Cells ; 12(6)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36980300

RESUMO

Community-acquired pneumonia remains a major contributor to global communicable disease-mediated mortality. Neutrophils play a leading role in trying to contain bacterial lung infection, but they also drive detrimental pulmonary inflammation, when dysregulated. Here we aimed at understanding the role of microRNA-223 in orchestrating pulmonary inflammation during pneumococcal pneumonia. Serum microRNA-223 was measured in patients with pneumococcal pneumonia and in healthy subjects. Pulmonary inflammation in wild-type and microRNA-223-knockout mice was assessed in terms of disease course, histopathology, cellular recruitment and evaluation of inflammatory protein and gene signatures following pneumococcal infection. Low levels of serum microRNA-223 correlated with increased disease severity in pneumococcal pneumonia patients. Prolonged neutrophilic influx into the lungs and alveolar spaces was detected in pneumococci-infected microRNA-223-knockout mice, possibly accounting for aggravated histopathology and acute lung injury. Expression of microRNA-223 in wild-type mice was induced by pneumococcal infection in a time-dependent manner in whole lungs and lung neutrophils. Single-cell transcriptome analyses of murine lungs revealed a unique profile of antimicrobial and cellular maturation genes that are dysregulated in neutrophils lacking microRNA-223. Taken together, low levels of microRNA-223 in human pneumonia patient serum were associated with increased disease severity, whilst its absence provoked dysregulation of the neutrophil transcriptome in murine pneumococcal pneumonia.


Assuntos
MicroRNAs , Pneumonia Pneumocócica , Animais , Humanos , Camundongos , Inflamação/genética , Inflamação/microbiologia , Inflamação/patologia , Pulmão/patologia , Camundongos Knockout , MicroRNAs/genética , Pneumonia Pneumocócica/genética , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Streptococcus pneumoniae
4.
STAR Protoc ; 4(1): 101957, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36542521

RESUMO

In infectious disease research, single-cell RNA sequencing allows dissection of host-pathogen interactions. As a prerequisite, we provide a protocol to transform solid and complex organs such as lungs into representative diverse, viable single-cell suspensions. Our protocol describes performance of vascular perfusion, pneumonectomy, enzymatic digestion, and mechanical dissociation of lung tissue, as well as red blood cell lysis and counting of isolated cells. A challenge remains, however, to further increase the proportion of pulmonary endothelial cells without compromising on viability. For complete details on the use and execution of this protocol, please refer to Nouailles et al. (2021),1 Wyler et al. (2022),2 and Ebenig et al. (2022).3.


Assuntos
Células Endoteliais , Análise da Expressão Gênica de Célula Única , Cricetinae , Animais , Camundongos , Morte Celular , Dissecação , Pulmão
5.
Eur Respir Rev ; 31(165)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35896273

RESUMO

Single-cell ribonucleic acid sequencing is becoming widely employed to study biological processes at a novel resolution depth. The ability to analyse transcriptomes of multiple heterogeneous cell types in parallel is especially valuable for cell-focused lung research where a variety of resident and recruited cells are essential for maintaining organ functionality. We compared the single-cell transcriptomes from publicly available and unpublished datasets of the lungs in six different species: human (Homo sapiens), African green monkey (Chlorocebus sabaeus), pig (Sus domesticus), hamster (Mesocricetus auratus), rat (Rattus norvegicus) and mouse (Mus musculus) by employing RNA velocity and intercellular communication based on ligand-receptor co-expression, among other techniques. Specifically, we demonstrated a workflow for interspecies data integration, applied a single unified gene nomenclature, performed cell-specific clustering and identified marker genes for each species. Overall, integrative approaches combining newly sequenced as well as publicly available datasets could help identify species-specific transcriptomic signatures in both healthy and diseased lung tissue and select appropriate models for future respiratory research.


Assuntos
Pneumologistas , Transcriptoma , Animais , Sequência de Bases , Chlorocebus aethiops , Cricetinae , Humanos , Pulmão , Camundongos , Ratos , Especificidade da Espécie , Suínos
6.
Crit Care ; 22(1): 287, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382866

RESUMO

BACKGROUND: Community-acquired pneumonia (CAP) remains a major cause of death worldwide. Mechanisms underlying the detrimental outcome despite adequate antibiotic therapy and comorbidity management are still not fully understood. METHODS: To model timely versus delayed antibiotic therapy in patients, mice with pneumococcal pneumonia received ampicillin twice a day starting early (24 h) or late (48 h) after infection. Clinical readouts and local and systemic inflammatory mediators after early and late antibiotic intervention were examined. RESULTS: Early antibiotic intervention rescued mice, limited clinical symptoms and restored fitness, whereas delayed therapy resulted in high mortality rates. Recruitment of innate immune cells remained unaffected by antibiotic therapy. However, both early and late antibiotic intervention dampened local levels of inflammatory mediators in the alveolar spaces. Early treatment protected from barrier breakdown, and reduced levels of vascular endothelial growth factor (VEGF) and perivascular and alveolar edema formation. In contrast, at 48 h post infection, increased pulmonary leakage was apparent and not reversed by late antibiotic treatment. Concurrently, levels of VEGF remained high and no beneficial effect on edema formation was evident despite therapy. Moreover, early but not late treatment protected mice from a vast systemic inflammatory response. CONCLUSIONS: Our data show that only early antibiotic therapy, administered prior to breakdown of the alveolar-capillary barrier and systemic inflammation, led to restored fitness and rescued mice from fatal streptococcal pneumonia. The findings highlight the importance of identifying CAP patients prior to lung barrier failure and systemic inflammation and of handling CAP as a medical emergency.


Assuntos
Antibacterianos/administração & dosagem , Pneumonia Pneumocócica/tratamento farmacológico , Pneumonia Pneumocócica/mortalidade , Fatores de Tempo , Ampicilina/administração & dosagem , Ampicilina/uso terapêutico , Análise de Variância , Animais , Antibacterianos/uso terapêutico , Líquido da Lavagem Broncoalveolar/citologia , Quimiocina CCL2/análise , Quimiocina CCL2/sangue , Quimiocina CCL3/análise , Quimiocina CCL3/sangue , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Estatísticas não Paramétricas , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/patogenicidade , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA