Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Digit Imaging ; 34(3): 495-522, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34131793

RESUMO

Diagnostic and evidential static image, video clip, and sound multimedia are captured during routine clinical care in cardiology, dermatology, ophthalmology, pathology, physiatry, radiation oncology, radiology, endoscopic procedural specialties, and other medical disciplines. Providers typically describe the multimedia findings in contemporaneous electronic health record clinical notes or associate a textual interpretative report. Visual communication aids commonly used to connect, synthesize, and supplement multimedia and descriptive text outside medicine remain technically challenging to integrate into patient care. Such beneficial interactive elements may include hyperlinks between text, multimedia elements, alphanumeric and geometric annotations, tables, graphs, timelines, diagrams, anatomic maps, and hyperlinks to external educational references that patients or provider consumers may find valuable. This HIMSS-SIIM Enterprise Imaging Community workgroup white paper outlines the current and desired clinical future state of interactive multimedia reporting (IMR). The workgroup adopted a consensus definition of IMR as "interactive medical documentation that combines clinical images, videos, sound, imaging metadata, and/or image annotations with text, typographic emphases, tables, graphs, event timelines, anatomic maps, hyperlinks, and/or educational resources to optimize communication between medical professionals, and between medical professionals and their patients." This white paper also serves as a precursor for future efforts toward solving technical issues impeding routine interactive multimedia report creation and ingestion into electronic health records.


Assuntos
Sistemas de Informação em Radiologia , Radiologia , Consenso , Diagnóstico por Imagem , Humanos , Multimídia
2.
JCO Clin Cancer Inform ; 5: 194-201, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33591796

RESUMO

Lack of interoperability is one of the greatest challenges facing healthcare informatics. Recent interoperability efforts have focused primarily on data transmission and generally ignore data capture standardization. Structured Data Capture (SDC) is an open-source technical framework that enables the capture and exchange of standardized and structured data in interoperable data entry forms (DEFs) at the point of care. Some of SDC's primary use cases concern complex oncology data such as anatomic pathology, biomarkers, and clinical oncology data collection and reporting. Its interoperability goals are the preservation of semantic, contextual, and structural integrity of the captured data throughout the data's lifespan. SDC documents are written in eXtensible Markup Language (XML) and are therefore computer readable, yet technology agnostic-SDC can be implemented by any EHR vendor or registry. Any SDC-capable system can render an SDC XML file into a DEF, receive and parse an SDC transmission, and regenerate the original SDC form as a DEF or synoptic report with the response data intact. SDC is therefore able to facilitate interoperable data capture and exchange for patient care, clinical trials, cancer surveillance and public health needs, clinical research, and computable care guidelines. The usability of SDC-captured oncology data is enhanced when the SDC data elements are mapped to standard terminologies. For example, an SDC map to Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) enables aggregation of SDC data with other related data sets and permits advanced queries and groupings on the basis of SNOMED CT concept attributes and description logic. SDC supports terminology maps using separate map files or as terminology codes embedded in an SDC document.


Assuntos
Semântica , Systematized Nomenclature of Medicine , Atenção à Saúde , Humanos , Oncologia
3.
J Digit Imaging ; 32(6): 1044-1051, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31289979

RESUMO

Cancer Care Ontario (CCO) is the clinical advisor to the Ontario Ministry of Health and Long-Term Care for the funding and delivery of cancer services. Data contained in radiology reports are inaccessible for analysis without significant manual cost and effort. Synoptic reporting includes highly structured reporting and discrete data capture, which could unlock these data for clinical and evaluative purposes. To assess the feasibility of implementing synoptic radiology reporting, a trial implementation was conducted at one hospital within CCO's Lung Cancer Screening Pilot for People at High Risk. This project determined that it is feasible to capture synoptic data with some barriers. Radiologists require increased awareness when reporting cases with a large number of nodules due to lack of automation within the system. These challenges may be mitigated by implementation of some report automation. Domains such as pathology and public health reporting have addressed some of these challenges with standardized reports based on interoperable standards, and radiology could borrow techniques from these domains to assist in implementing synoptic reporting. Data extraction from the reports could also be significantly automated to improve the process and reduce the workload in collecting the data. RadLex codes aided the difficult data extraction process, by helping label potential ambiguity with common terms and machine-readable identifiers.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Projetos de Pesquisa/estatística & dados numéricos , Relatório de Pesquisa , Tomografia Computadorizada por Raios X/métodos , Humanos , Pulmão/diagnóstico por imagem , Ontário , Doses de Radiação , Radiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA