Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Biol Macromol ; 262(Pt 1): 129868, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309398

RESUMO

P. falciparumerythrocyte membrane protein 1 (PfEMP1) is the major parasite protein responsible for rosetting by binding to host receptors such as heparan sulfate, CR1 on RBC surface. Usually monomeric protein-carbohydrate interactions are weak [1], therefore PfEMP1 binds to plasma proteins like IgM or α2-macroglobulin that facilitate its clustering on parasitized RBC surface and augment rosetting [2,3]. We show that 3D7A expresses PfEMP1, PF3D7_0412900, and employs its CIDRγ2 domain to interact with glycophorin B on uninfected RBC to form large rosettes but more importantly even in the absence of plasma proteins. Overall, we established the role of PF3D7_0412900 in rosetting as antibodies against CIDRγ2 domain reduced rosetting and also identified its receptor, glycophorin B which could provide clue why glycophorin B null phenotype, S-s-U- RBCs prevalent in malaria endemic areas is protective against severe malaria.


Assuntos
Malária , Plasmodium falciparum , Humanos , Plasmodium falciparum/metabolismo , Glicoforinas/metabolismo , Proteínas de Protozoários/química , Eritrócitos/metabolismo , Proteínas Sanguíneas/metabolismo
2.
Nat Commun ; 14(1): 6391, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828011

RESUMO

Placental malaria is caused by Plasmodium falciparum-infected erythrocytes (IEs) adhering to chondroitin sulfate proteoglycans in placenta via VAR2CSA-type PfEMP1. Human pentameric immunoglobulin M (IgM) binds to several types of PfEMP1, including VAR2CSA via its Fc domain. Here, a 3.6 Å cryo-electron microscopy map of the IgM-VAR2CSA complex reveals that two molecules of VAR2CSA bind to the Cµ4 of IgM through their DBL3X and DBL5ε domains. The clockwise and anti-clockwise rotation of the two VAR2CSA molecules on opposite faces of IgM juxtaposes C-termini of both VAR2CSA near the J chain, where IgM creates a wall between both VAR2CSA molecules and hinders its interaction with its receptor. To support this, we show when VAR2CSA is bound to IgM, its staining on IEs as well as binding of IEs to chondroitin sulfate A in vitro is severely compromised.


Assuntos
Malária Falciparum , Plasmodium falciparum , Feminino , Gravidez , Humanos , Plasmodium falciparum/metabolismo , Sulfatos de Condroitina/metabolismo , Microscopia Crioeletrônica , Placenta/metabolismo , Antígenos de Protozoários/metabolismo , Anticorpos Antiprotozoários/metabolismo , Eritrócitos/metabolismo , Imunoglobulina M/metabolismo
3.
Int J Biol Macromol ; 226: 143-158, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36470436

RESUMO

VAR2CSA, a multidomain Plasmodium falciparum protein, mediates the adherence of parasite-infected red blood cells to chondroitin 4-sulfate (C4S) in the placenta, contributing to placental malaria. Therefore, detailed understanding of VAR2CSA structure likely help developing strategies to treat placental malaria. The VAR2CSA ectodomain consists of an N-terminal segment (NTS), six Duffy binding-like (DBL) domains, and three interdomains (IDs) present in sequence NTS-DBL1x-ID1-DBL2x-ID2-DBL3x-DBL4ε-ID3-DBL5ε-DBL6ε. Recent electron microscopy studies showed that VAR2CSA is compactly organized into a globular structure containing C4S-binding channel, and that DBL5ε-DBL6ε arm is attached to the NTS-ID3 core structure. However, the structural elements involved in inter-domain interactions that stabilize the VAR2CSA structure remain largely not understood. Here, limited proteolysis and peptide mapping by mass spectrometry showed that VAR2CSA contains several inter-domain disulfide bonds that stabilize its compact structure. Chemical crosslinking-mass spectrometry showed that all IDs interact with DBL4ε; additionally, IDs interact with other DBL domains, demonstrating that IDs are the key structural scaffolds that shape the functional NTS-ID3 core. Ligand binding analysis suggested that NTS considerably restricts the C4S binding. Overall, our study revealed that inter-domain disulfide bonds and interactions between IDs and DBL domains contribute to the stability of VAR2CSA structural architecture and formation of C4S-binding channel.


Assuntos
Malária Falciparum , Malária , Humanos , Feminino , Gravidez , Placenta/metabolismo , Malária Falciparum/metabolismo , Antígenos de Protozoários/química , Estrutura Terciária de Proteína , Plasmodium falciparum/metabolismo , Sulfatos de Condroitina/química , Eritrócitos/metabolismo , Dissulfetos/metabolismo
4.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-34857677

RESUMO

The COVID-19 pandemic that emerged around December 2019 claimed millions of lives. For vaccine development, S protein on viral envelope that binds to ACE2 receptor on cells for entry was identified as vaccine candidate. S protein consists of Receptor Binding Motif (RBM) in the S1 subunit followed by the S2 subunit with an intermediate furin cleavage site. A stabilized version of S protein with 2 proline residues was used as antigen. Overall, most vaccines exhibited efficacy between 80 and 95%. However, being a RNA virus that is prone to mutations along with selection pressure on S protein and frequent use of convalescent plasma led to evolution of variants. These variants are responsible for multiple waves of infection observed globally. In our review, we discuss current data on vaccines and its efficacy in neutralizing SARS-CoV-2 from Wuhan and its variants. Further, our docked mutations observed in variants on the ACE2-S complex cryo-EM structure show that mostly the S1 domain is under selection pressure where major mutations occur in the N terminal domain (NTD), RBM and junction near S1-S2 subunit. Therefore, this review would be a reference for development of new candidate antigen(s) with better efficacy against variants.


Assuntos
Vacinas contra COVID-19 , COVID-19/prevenção & controle , COVID-19/virologia , SARS-CoV-2 , Motivos de Aminoácidos , Anticorpos Neutralizantes , Antígenos/química , Sítios de Ligação , Saúde Global , Humanos , Índia/epidemiologia , Mutação , Pandemias/prevenção & controle , Prolina , Ligação Proteica , Domínios Proteicos , Desenvolvimento de Vacinas
5.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-32554907

RESUMO

COVID-19 has become one of the biggest health concern, along with huge economic burden. With no clear remedies to treat the disease, doctors are repurposing drugs like chloroquine and remdesivir to treat COVID-19 patients. In parallel, research institutes in collaboration with biotech companies have identified strategies to use viral proteins as vaccine candidates for COVID-19. Although this looks promising, they still need to pass the test of challenge studies in animal models. As various models for SARS-CoV-2 are under testing phase, biotech companies have bypassed animal studies and moved to Phase I clinical trials. In view of the present outbreak, this looks a justified approach, but the problem is that in the absence of animal studies, we can never predict the outcomes in humans. Since animal models are critical for vaccine development and SARS-CoV-2 has different transmission dynamics, in this review we compare different animal models of SARS-CoV-2 with humans for their pathogenic, immune response and transmission dynamics that make them ideal models for vaccine testing for COVID-19. Another issue of using animal model is the ethics of using animals for research; thus, we also discuss the pros and cons of using animals for vaccine development studies.


Assuntos
Experimentação Animal , Infecções por Coronavirus/imunologia , Modelos Animais , Pneumonia Viral/imunologia , Vacinas Virais , Animais , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Humanos , Pandemias , Pneumonia Viral/tratamento farmacológico
6.
FEBS J ; 287(13): 2744-2762, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31821735

RESUMO

The malarial parasite Plasmodium exports its own proteins to the cell surfaces of red blood cells (RBCs) during infection. Examples of exported proteins include members of the repetitive interspersed family (RIFIN) and subtelomeric variable open reading frame (STEVOR) family of proteins from Plasmodium falciparum. The presence of these parasite-derived proteins on surfaces of infected RBCs triggers the adhesion of infected cells to uninfected cells (rosetting) and to the vascular endothelium potentially obstructing blood flow. While there is a fair amount of information on the localization of these proteins on the cell surfaces of RBCs, less is known about how they can be exported to the membrane and the topologies they can adopt during the process. The first step of export is plausibly the cotranslational insertion of proteins into the endoplasmic reticulum (ER) of the parasite, and here, we investigate the insertion of three RIFIN and two STEVOR proteins into the ER membrane. We employ a well-established experimental system that uses N-linked glycosylation of sites within the protein as a measure to assess the extent of membrane insertion and the topology it assumes when inserted into the ER membrane. Our results indicate that for all the proteins tested, transmembranes (TMs) 1 and 3 integrate into the membrane, so that the protein assumes an overall topology of Ncyt-Ccyt. We also show that the segment predicted to be TM2 for each of the proteins likely does not reside in the membrane, but is translocated to the lumen.


Assuntos
Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Membrana Celular/química , Retículo Endoplasmático , Células HEK293 , Humanos , Conformação Proteica
7.
Sci Rep ; 7(1): 14042, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070841

RESUMO

Variegated surface antigen expression is key to chronic infection and pathogenesis of the human malaria parasite Plasmodium falciparum. This protozoan parasite expresses distinct surface molecules that are encoded by clonally variant gene families such as var, rif and stevor. The molecular mechanisms governing activation of individual members remain ill-defined. To investigate the molecular events of the initial transcriptional activation process we focused on a member of the apicomplexan ApiAP2 transcription factor family predicted to bind to the 5' upstream regions of the var gene family, AP2-exp (PF3D7_1466400). Viable AP2-exp mutant parasites rely on expressing no less than a short truncated protein including the N-terminal AP2 DNA-binding domain. RNA-seq analysis in mutant parasites revealed transcriptional changes in a subset of exported proteins encoded by clonally variant gene families. Upregulation of RIFINs and STEVORs was validated at the protein levels. In addition, morphological alterations were observed on the surface of the host cells infected by the mutants. This work points to a complex regulatory network of clonally variant gene families in which transcription of a subset of members is regulated by the same transcription factor. In addition, we highlight the importance of the non-DNA binding AP2 domain in functional gene regulation.


Assuntos
Regulação da Expressão Gênica , Plasmodium falciparum/genética , Proteínas de Protozoários/fisiologia , Genes de Protozoários , Variação Genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
8.
Nat Rev Microbiol ; 15(8): 479-491, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28603279

RESUMO

Proliferation and differentiation inside erythrocytes are important steps in the life cycle of Plasmodium spp. To achieve these, the parasites export polypeptides to the surface of infected erythrocytes; for example, to import nutrients and to bind to other erythrocytes and the host microvasculature. Binding is mediated by the adhesive polypeptides Plasmodium falciparum-encoded repetitive interspersed families of polypeptides (RIFINs), subtelomeric variant open reading frame (STEVOR) and P. falciparum erythrocyte membrane protein 1 (PfEMP1), which are encoded by multigene families to ensure antigenic variation and evasion of host immunity. These variant surface antigens are suggested to mediate the sequestration of infected erythrocytes in the microvasculature and block the blood flow when binding is excessive. In this Review, we discuss the multigene families of surface variant polypeptides and highlight their roles in causing severe malaria.


Assuntos
Antígenos de Protozoários/genética , Malária Falciparum/parasitologia , Família Multigênica , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Animais , Variação Antigênica , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Eritrócitos/parasitologia , Humanos , Evasão da Resposta Imune , Malária Falciparum/imunologia , Plasmodium falciparum/química , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia
9.
Cell Rep ; 14(4): 723-736, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26776517

RESUMO

Plasmodium falciparum virulence is associated with sequestration of infected erythrocytes. Microvascular binding mediated by PfEMP1 in complex with non-immune immunoglobulin M (IgM) is common among parasites that cause both severe childhood malaria and pregnancy-associated malaria. Here, we present cryo-molecular electron tomography structures of human IgM, PfEMP1 and their complex. Three-dimensional reconstructions of IgM reveal that it has a dome-like core, randomly oriented Fab2s units, and the overall shape of a turtle. PfEMP1 is a C- shaped molecule with a flexible N terminus followed by an arc-shaped backbone and a bulky C terminus that interacts with IgM. Our data demonstrate that the PfEMP1 binding pockets on IgM overlap with those of C1q, and the bulkiness of PfEMP1 limits the capacity of IgM to interact with PfEMP1. We suggest that P. falciparum exploits IgM to cluster PfEMP1 into an organized matrix to augment its affinity to host cell receptors.


Assuntos
Imunoglobulina M/química , Plasmodium falciparum/química , Proteínas de Protozoários/química , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Imunoglobulina M/metabolismo , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Ligação Proteica , Proteínas de Protozoários/metabolismo
10.
Nat Med ; 21(4): 314-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25751816

RESUMO

Rosetting is a virulent Plasmodium falciparum phenomenon associated with severe malaria. Here we demonstrate that P. falciparum-encoded repetitive interspersed families of polypeptides (RIFINs) are expressed on the surface of infected red blood cells (iRBCs), where they bind to RBCs--preferentially of blood group A--to form large rosettes and mediate microvascular binding of iRBCs. We suggest that RIFINs have a fundamental role in the development of severe malaria and thereby contribute to the varying global distribution of ABO blood groups in the human population.


Assuntos
Antígenos de Protozoários/fisiologia , Eritrócitos/parasitologia , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/fisiologia , Sistema ABO de Grupos Sanguíneos , Animais , Células CHO , Cricetinae , Cricetulus , Cães , Drosophila , Escherichia coli/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Imunoglobulina G/imunologia , Masculino , Microcirculação , Microscopia Confocal , Microssomos/metabolismo , Pâncreas/parasitologia , Multimerização Proteica , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA , Transfecção
11.
J Biol Chem ; 289(49): 34408-21, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25342752

RESUMO

The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family proteins mediate the adherence of infected erythrocytes to microvascular endothelia of various organs, including the placenta, thereby contributing to cerebral, placental, and other severe malaria pathogenesis. Several parasite proteins, including KAHRP and PfEMP3, play important roles in the cytoadherence by mediating the clustering of PfEMP1 in rigid knoblike structures on the infected erythrocyte surface. The lack of a subtelomeric region of chromosome 2 that contains kahrp and pfemp3 causes reduced cytoadherence. In this study, microarray transcriptome analysis showed that the absence of a gene cluster, comprising kahrp, pfemp3, and four other genes, results in the loss of parasitized erythrocytes adhering to chondroitin 4-sulfate (C4S). The role of one of these genes, PF3D7_0201600/PFB0080c, which encodes PHISTb (Plasmodium helical interspersed subtelomeric b) domain-containing RESA-like protein 1 expressed on the infected erythrocyte surface, was investigated. Disruption of PFB0080c resulted in increased var2csa transcription and VAR2CSA surface expression, leading to higher C4S-binding capacity of infected erythrocytes. Further, PFB0080c-knock-out parasites stably maintained the C4S adherence through many generations of growth. Although the majority of PFB0080c-knock-out parasites bound to C4S even after culturing for 6 months, a minor population bound to both C4S and CD36. These results strongly suggest that the loss of PFB0080c markedly compromises the var gene switching process, leading to a marked reduction in the switching rate and additional PfEMP1 expression by a minor population of parasites. PFB0080c interacts with VAR2CSA and modulates knob-associated Hsp40 expression. Thus, PFB0080c may regulate VAR2CSA expression through these processes. Overall, we conclude that PFB0080c regulates PfEMP1 expression and the parasite's cytoadherence.


Assuntos
Antígenos de Protozoários/genética , Sulfatos de Condroitina/química , Eritrócitos/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Antígenos de Protozoários/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Adesão Celular , Sulfatos de Condroitina/metabolismo , Cromossomos , Eritrócitos/química , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Família Multigênica , Peptídeos/deficiência , Peptídeos/genética , Plasmodium falciparum/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo
12.
Trends Parasitol ; 27(9): 375-81, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21507719

RESUMO

Plasmodium falciparum infection during pregnancy results in the sequestration of infected red blood cells (IRBCs) in the placenta, contributing to pregnancy associated malaria (PAM). IRBC adherence is mediated by the binding of a variant Plasmodium falciparum erythrocyte binding protein 1 named VAR2CSA to the low sulfated chondroitin 4-sulfate (C4S) proteoglycan (CSPG) present predominantly in the intervillous space of the placenta. IRBC binding is highly specific to the level and distribution of 4-sulfate groups in C4S. Given the strict specificity of IRBC-C4S interactions, it is better to use either placental CSPG or CSPGs bearing structurally similar C4S chains in defining VAR2CSA structural architecture that interact with C4S, evaluating VAR2CSA constructs for vaccine development or studying structure-based inhibitors as therapeutics for PAM.


Assuntos
Antígenos de Protozoários/metabolismo , Antígenos/metabolismo , Sulfatos de Condroitina/metabolismo , Plasmodium falciparum/patogenicidade , Complicações Parasitárias na Gravidez/parasitologia , Proteoglicanas/metabolismo , Adesão Celular , Eritrócitos/parasitologia , Feminino , Humanos , Malária Falciparum/parasitologia , Placenta/metabolismo , Plasmodium falciparum/metabolismo , Gravidez , Ligação Proteica , Proteínas de Protozoários/metabolismo , Especificidade por Substrato , Trofoblastos/metabolismo
13.
Proc Natl Acad Sci U S A ; 107(38): 16643-8, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20823248

RESUMO

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family members mediate the adherence of parasite-infected red blood cells (IRBCs) to various host receptors. A previous study has shown that the parasite protein, cytoadherence-linked asexual gene 9 (CLAG9), is also essential for IRBC adherence. However, how CLAG9 influences this process remains unknown. In this study, we show that CLAG9 interacts with VAR2CSA, a PfEMP1 that mediates IRBC adherence to chondroitin 4-sulfate in the placenta. Importantly, our results show that the adherent parasites synthesize CLAG9 at two stages--the early ring and late trophozoite stages. Localization studies revealed that a substantial level of CLAG9 is located mainly at or in close proximity of the IRBC membrane in association with VAR2CSA. Upon treatment of IRBCs with trypsin, a significant amount of CLAG9 (≈150 kDa) was converted into ≈142-kDa polypeptide. Together these data demonstrate that a considerable amount of CLAG9 is embedded in the IRBC membrane such that at least a portion of the polypeptide at either N or C terminus is exposed on the cell surface. In parasites lacking CLAG9, VAR2CSA failed to express on the IRBC surface and was located within the parasite. Based on these findings, we propose that CLAG9 plays a critical role in the trafficking of PfEMP1s onto the IRBC surface. These results have important implications for the development of therapeutics for cerebral, placental, and other cytoadherence-associated malaria illnesses.


Assuntos
Antígenos de Protozoários/fisiologia , Moléculas de Adesão Celular/fisiologia , Plasmodium falciparum/fisiologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/fisiologia , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Sequência de Bases , Adesão Celular/fisiologia , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Sulfatos de Condroitina/fisiologia , DNA de Protozoário/genética , Membrana Eritrocítica/parasitologia , Membrana Eritrocítica/fisiologia , Membrana Eritrocítica/ultraestrutura , Eritrócitos/parasitologia , Feminino , Técnicas de Inativação de Genes , Genes de Protozoários , Interações Hospedeiro-Parasita/fisiologia , Humanos , Técnicas In Vitro , Microscopia Imunoeletrônica , Complexos Multiproteicos , Placenta/parasitologia , Placenta/fisiologia , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Gravidez , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/química , Proteínas de Protozoários/genética
14.
Exp Parasitol ; 123(2): 105-10, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19508868

RESUMO

In pregnant women infected with Plasmodium falciparum, the infected red blood cells (IRBCs) sequester in placenta by binding to the chondroitin 4-sulfate (C4S) chains of low sulfated chondroitin sulfate proteoglycan (CSPG). Placental CSPG, the natural receptor for IRBC adherence in the placenta, is the ideal molecule for studying structural interactions in IRBC adhesion to C4S, adhesion inhibitory antibody responses, and identification of parasite adhesive protein(s). However, because of difficulty involved in purifying placental CSPG, the commercially available bovine tracheal chondroitin sulfate A (bCSA), a copolymer having structural features of both C4S and C6S, has been widely used. To determine the validity of bCSA for C4S-IRBC interaction studies, we comparatively evaluated the characteristics of IRBC binding to placental CSPG and bCSA using three commonly used parasite strains. The results indicate that, in all three parasites studied, the characteristics of IRBC binding to placental CSPG and bCSA are qualitatively similar, but the binding capacity with respect to both the number of IRBCs bound per unit area of coated surface and binding strength is significantly higher for CSPG than bCSA regardless of whether parasites were selected on CSPG or bCSA. These results demonstrate that placental CSPG is best suited for studying interactions between parasite adhesive protein(s) and C4S, and have implications in understanding C4S-IRBC structural interactions.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/metabolismo , Eritrócitos/parasitologia , Placenta/química , Plasmodium falciparum/metabolismo , Animais , Bovinos , Proteoglicanas de Sulfatos de Condroitina/isolamento & purificação , Relação Dose-Resposta a Droga , Eritrócitos/metabolismo , Feminino , Humanos , Placenta/metabolismo , Placenta/parasitologia , Gravidez , Traqueia/química
15.
J Biol Chem ; 284(23): 15750-61, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19359247

RESUMO

Proinflammatory responses induced by Plasmodium falciparum glycosylphosphatidylinositols (GPIs) are thought to be involved in malaria pathogenesis. In this study, we investigated the role of MAPK-activated protein kinase 2 (MK2) in the regulation of tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-12, two of the major inflammatory cytokines produced by macrophages stimulated with GPIs. We show that MK2 differentially regulates the GPI-induced production of TNF-alpha and IL-12. Although TNF-alpha production was markedly decreased, IL-12 expression was increased by 2-3-fold in GPI-stimulated MK2(-/-) macrophages compared with wild type (WT) cells. MK2(-/-) macrophages produced markedly decreased levels of TNF-alpha than WT macrophages mainly because of lower mRNA stability and translation. In the case of IL-12, mRNA was substantially higher in MK2(-/-) macrophages than WT. This enhanced production is due to increased NF-kappaB binding to the gene promoter, a markedly lower level expression of the transcriptional repressor factor c-Maf, and a decreased binding of GAP-12 to the gene promoter in MK2(-/-) macrophages. Thus, our data demonstrate for the first time the role of MK2 in the transcriptional regulation of IL-12. Using the protein kinase inhibitors SB203580 and U0126, we also show that the ERK and p38 pathways regulate TNF-alpha and IL-12 production, and that both inhibitors can reduce phosphorylation of MK2 in response to GPIs and other toll-like receptor ligands. These results may have important implications for developing therapeutics for malaria and other infectious diseases.


Assuntos
Glicosilfosfatidilinositóis/farmacologia , Interleucina-12/biossíntese , MAP Quinase Quinase 2/metabolismo , Macrófagos/parasitologia , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/genética , Fator de Necrose Tumoral alfa/biossíntese , Animais , Células da Medula Óssea/parasitologia , Primers do DNA , Eritrócitos/parasitologia , Regulação da Expressão Gênica , Humanos , MAP Quinase Quinase 2/deficiência , MAP Quinase Quinase 2/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Proteínas de Protozoários/metabolismo , RNA/genética , RNA/isolamento & purificação , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/genética
16.
Biochemistry ; 47(47): 12635-43, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-18975976

RESUMO

Infection with Plasmodium falciparum during pregnancy results in the adherence of infected red blood cells (IRBCs) in placenta, causing pregnancy-associated malaria with severe health complications in mothers and fetuses. The chondroitin 4-sulfate (C4S) chains of very low sulfated chondroitin sulfate proteoglycans (CSPGs) in placenta mediate the IRBC adherence. While it is known that partially sulfated but not fully sulfated C4S effectively binds IRBCs, structural interactions involved remain unclear and are incompletely understood. In this study, structurally defined C4S oligosaccharides of varying sulfate contents and sizes were evaluated for their ability to inhibit the binding of IRBCs from different P. falciparum strains to CSPG purified from placenta. The results clearly show that, with all parasite strains studied, dodecasaccharide is the minimal chain length required for the efficient adherence of IRBCs to CSPG and two 4-sulfated disaccharides within this minimal structural motif are sufficient for maximal binding. Together, these data demonstrate for the first time that the C4S structural requirement for IRBC adherence is parasite strain-independent. We also show that the carboxyl group on nonreducing end glucuronic acid in dodecasaccharide motif is important for IRBC binding. Thus, in oligosaccharides containing terminal 4,5-unsaturated glucuronic acid, the nonreducing end disaccharide moiety does not interact with IRBCs due to the altered spatial orientation of carboxyl group. In such C4S oligosaccharides, 14-mer but not 12-mer constitutes the minimal motif for inhibition of IRBC binding to placental CSPG. These data have important implications for the development and evaluation of therapeutics and vaccine for placental malaria.


Assuntos
Sulfatos de Condroitina/farmacologia , Agregação Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Malária Falciparum/sangue , Placenta/irrigação sanguínea , Complicações Parasitárias na Gravidez/sangue , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/isolamento & purificação , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/química , Eritrócitos/citologia , Eritrócitos/metabolismo , Feminino , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Humanos , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Placenta/patologia , Gravidez , Complicações Parasitárias na Gravidez/metabolismo
17.
Vaccine ; 25(5): 806-13, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17045706

RESUMO

Malaria parasites require specific receptor-ligand interactions to invade host erythrocytes. The 175 kDa Plasmodium falciparum erythrocyte binding antigen (EBA-175) binds sialic acid residues on glycophorin A to mediate erythrocyte invasion. The amino-terminal, conserved, cysteine-rich region of EBA-175, referred to as F2, contains receptor-binding sites. We propose to develop a recombinant malaria vaccine based on region F2. Recombinant P. falciparum region F2 (PfF2) was expressed in Escherichia coli, purified from inclusion bodies under denaturing conditions by metal affinity chromatography, renatured by oxidative refolding and purified further by ion-exchange and gel filtration chromatography. Recombinant PfF2 was characterized and shown to be pure, homogeneous and functionally active in that it binds human erythrocytes with specificity. The immunogenicity of recombinant PfF2 formulated with three human compatible adjuvants, namely, Montanide ISA720, AS02A and alum was tested in mice. All the formulations tested elicited high titer antibodies that block erythrocyte invasion in vitro. The AS02 formulation yielded sera with the highest end-point ELISA titers followed by Montanide ISA720 and alum. Analysis of cellular immune responses indicated that all formulations resulted in significant splenocyte proliferation. Analysis of cytokines secreted by proliferating splenocytes indicated that all the adjuvant formulations tested induced Th1 type responses. These results suggest that recombinant PfF2 formulated with human compatible adjuvants is immunogenic and can elicit high titer invasion inhibitory antibodies providing support for further clinical development of this promising vaccine candidate.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Proteínas de Protozoários/imunologia , Vacinas Sintéticas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos de Protozoários/química , Sítios de Ligação , Citocinas/biossíntese , Vacinas Antimaláricas/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Dobramento de Proteína , Proteínas de Protozoários/química , Vacinação , Vacinas Sintéticas/administração & dosagem
18.
Structure ; 12(3): 389-96, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15016355

RESUMO

De novo design of supersecondary structures is expected to provide useful molecular frameworks for the incorporation of functional sites as in proteins. A 21 residue long, dehydrophenylalanine-containing peptide has been de novo designed and its crystal structure determined. The apolar peptide folds into a helical hairpin supersecondary structure with two right-handed helices, connected by a tetraglycine linker. The helices of the hairpin interact with each other through a combination of C-H.O and N-H.O hydrogen bonds. The folding of the apolar peptide has been realized without the help of either metal ions or disulphide bonds. A remarkable feature of the peptide is the unanticipated occurrence of an anion binding motif in the linker region, strikingly similar in conformation and function to the "nest" motif seen in several proteins. The observation supports the view for the possible emergence of rudimentary functions over short sequence stretches in the early peptides under prebiotic conditions.


Assuntos
Ânions/metabolismo , Peptídeos/química , Engenharia de Proteínas , Dicroísmo Circular , Ligação de Hidrogênio , Peptídeos/metabolismo , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA