Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Microbiol Methods ; 223: 106960, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38788980

RESUMO

The CDC Biofilm Reactor method is the standard biofilm growth protocol for the validation of US Environmental Protection Agency biofilm label claims. However, no studies have determined the effect of coupon orientation within the reactor on biofilm growth. If positional effects have a statistically significant impact on biofilm density, they should be accounted for in the experimental design. Here, we isolate and quantify biofilms from each possible coupon surface in the reactor to quantitatively determine the positional effects in the CDC Biofilm Reactor. The results showed no statistically significant differences in viable cell density across different orientations and vertical positions in the reactor. Pseudomonas aeruginosa log densities were statistically equivalent among all coupon heights and orientations. While the Staphylococcus aureus cell growth showed no statistically significant differences, the densities were not statistically equivalent among all coupon heights and orientations due to the variability in the data. Structural differences were observed between biofilms on the high-shear baffle side of the reactor compared to the lower shear glass side of the reactor. Further studies are required to determine whether biofilm susceptibility to antimicrobials differs based on structural differences attributed to orientation.

2.
Biofilm ; 7: 100196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38601816

RESUMO

There has been considerable discussion regarding the environmental life cycle of Legionella pneumophila and its virulence potential in natural and man-made water systems. On the other hand, the bacterium's morphogenetic mechanisms within host cells (amoeba and macrophages) have been well documented and are linked to its ability to transition from a non-virulent, replicative state to an infectious, transmissive state. Although the morphogenetic mechanisms associated with the formation and detachment of the L. pneumophila biofilm have also been described, the capacity of the bacteria to multiply extracellularly is not generally accepted. However, several studies have shown genetic pathways within the biofilm that resemble intracellular mechanisms. Understanding the functionality of L. pneumophila cells within a biofilm is fundamental for assessing the ecology and evaluating how the biofilm architecture influences L. pneumophila survival and persistence in water systems. This manuscript provides an overview of the biphasic cycle of L. pneumophila and its implications in associated intracellular mechanisms in amoeba. It also examines the molecular pathways and gene regulation involved in L. pneumophila biofilm formation and dissemination. A holistic analysis of the transcriptional activities in L. pneumophila biofilms is provided, combining the information of intracellular mechanisms in a comprehensive outline. Furthermore, this review discusses the techniques that can be used to study the morphogenetic states of the bacteria within biofilms, at the single cell and population levels.

3.
Int J Food Microbiol ; 415: 110630, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38401380

RESUMO

Craft brewing is continually gaining popularity in the United States. Craft brewers are committed to producing a wide variety of products and have a vested interest in product quality. Therefore, these brewers have the expectation that the beer poured at the tap will match the quality product that left the brewery. The presence of biofilm in draught lines is hypothesized as a contributing factor when this expectation is not achieved. Clean in place strategies based on the Sinner's Circle of Cleaning are used to remediate organic and inorganic accumulation in beer draught lines, including controlling biofilm accumulation. A study was conducted to determine if repeated exposure to chemical cleaning of vinyl beer tubing impacted biofilm growth, kill/removal, and subsequent regrowth of a mixed species biofilm. The tubing was conditioned to simulate one, two, and five years of use. The data collected demonstrates a clear trend between simulated age of the tubing and biofilm accumulation on the surface. Bacterial log densities ranged from 5.6 Log10(CFU/cm2) for the new tubing to 6.6 Log10(CFU/cm2) for tubing aged to simulate five years of use. The counts for the yeast were similar. Caustic cleaning of the tubing, regardless of starting biofilm coverage, left less than 2.75 Log10(CFU/cm2) viable bacteria and yeast cells remaining on the tubing surface. This demonstrated the effectiveness of the caustic at controlling biofilm accumulation in the simulated beer draught line. The biofilm that accumulated in the five-year aged tubing was able to recover more quickly, reaching 3.6 Log10(CFU/cm2) within 24 h indicating the treatment did not fully eradicate the biofilm, suggesting that the strong chemistry used in this study would cease to be as effective over time.


Assuntos
Cerveja , Cáusticos , Saccharomyces cerevisiae , Cáusticos/farmacologia , Biofilmes , Bactérias
4.
Biofilm ; 6: 100151, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37662850

RESUMO

Bacterial biofilms account for up to 80% of all infections and complicate successful therapies due to their intrinsic tolerance to antibiotics. Biofilms also cause serious problems in the industrial sectors, for instance due to the deterioration of metals or microbial contamination of products. Efforts are put in finding novel strategies in both avoiding and fighting biofilms. Biofilm control is achieved by killing and/or removing biofilm or preventing transition to the biofilm lifestyle. Previous research reported on the anti-biofilm potency of α,α-disubstituted ß-amino amides A1, A2 and A3, which are small antimicrobial peptidomimetics with a molecular weight below 500 Da. In the current study it was investigated if these derivatives cause a fast disintegration of biofilm bacteria and removal of Staphylococcus aureus biofilms. One hour incubation of biofilms with all three derivatives resulted in reduced metabolic activity and membrane permeabilization in S. aureus (ATCC 25923) biofilms. Bactericidal properties of these derivatives were attributed to a direct effect on membranes of biofilm bacteria. The green fluorescence protein expressing Staphylococcus aureus strain AH2547 was cultivated in a CDC biofilm reactor and utilized for disinfectant efficacy testing of A3, following the single tube method (American Society for Testing and Materials designation number E2871). A3 at a concentration of 90 µM acted as fast as 100 µM chlorhexidine and was equally effective. Confocal laser scanning microscopy studies showed that chlorhexidine treatment lead to fluorescence fading indicating membrane permeabilization but did not cause biomass removal. In contrast, A3 treatment caused a simultaneous biofilm fluorescence loss and biomass removal. These dual anti-biofilm properties make α,α-disubstituted ß-amino amides promising scaffolds in finding new control strategies against recalcitrant biofilms.

5.
Biofilm ; 5: 100102, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36660363

RESUMO

Biofilms are self-organized communities of microorganisms that are encased in an extracellular polymeric matrix and often found attached to surfaces. Biofilms are widely present on Earth, often found in diverse and sometimes extreme environments. These microbial communities have been described as recalcitrant or protective when facing adversity and environmental exposures. On the International Space Station, biofilms were found in human-inhabited environments on a multitude of hardware surfaces. Moreover, studies have identified phenotypic and genetic changes in the microorganisms under microgravity conditions including changes in microbe surface colonization and pathogenicity traits. Lack of consistent research in microgravity-grown biofilms can lead to deficient understanding of altered microbial behavior in space. This could subsequently create problems in engineered systems or negatively impact human health on crewed spaceflights. It is especially relevant to long-term and remote space missions that will lack resupply and service. Conversely, biofilms are also known to benefit plant growth and are essential for human health (i.e., gut microbiome). Eventually, biofilms may be used to supply metabolic pathways that produce organic and inorganic components useful to sustaining life on celestial bodies beyond Earth. This article will explore what is currently known about biofilms in space and will identify gaps in the aerospace industry's knowledge that should be filled in order to mitigate or to leverage biofilms to the advantage of spaceflight.

6.
Biotechnol Bioeng ; 120(1): 239-249, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36123299

RESUMO

Biofilms are often polymicrobial in nature, which can impact their behavior and overall structure, often resulting in an increase in biomass and enhanced antimicrobial resistance. Using plate counts and locked nucleic acid/2'-O-methyl-RNA fluorescence in situ hybridization (LNA/2'OMe-FISH), we studied the interactions of four species commonly associated with catheter-associated urinary tract infections (CAUTI): Enterococcus faecalis, Escherichia coli, Candida albicans, and Proteus mirabilis. Eleven combinations of biofilms were grown on silicone coupons placed in 24-well plates for 24 h, 37°C, in artificial urine medium (AUM). Results showed that P. mirabilis was the dominant species and was able to inhibit both E. coli and C. albicans growth. In the absence of P. mirabilis, an antagonistic relationship between E. coli and C. albicans was observed, with the former being dominant. E. faecalis growth was not affected in any combination, showing a more mutualistic relationship with the other species. Imaging results correlated with the plate count data and provided visual verification of species undetected using the viable plate count. Moreover, the three bacterial species showed overall good repeatability SD (Sr ) values (0.1-0.54) in all combinations tested, whereas C. albicans had higher repeatability Sr values (0.36-1.18). The study showed the complexity of early-stage interactions in polymicrobial biofilms. These interactions could serve as a starting point when considering targets for preventing or treating CAUTI biofilms containing these species.


Assuntos
Cateteres Urinários , Infecções Urinárias , Cateteres Urinários/microbiologia , Escherichia coli/genética , Hibridização in Situ Fluorescente , Proteus mirabilis/genética , Biofilmes , Infecções Urinárias/prevenção & controle , Candida albicans
7.
Biofilm ; 6: 100150, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38196503
8.
Nat Rev Microbiol ; 20(10): 608-620, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35922483

RESUMO

Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Animais , Estágios do Ciclo de Vida , Pseudomonas aeruginosa/fisiologia
9.
J Vis Exp ; (182)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35532264

RESUMO

Biofilm methods consist of four distinct steps: growing the biofilm in a relevant model, treating the mature biofilm, harvesting the biofilm from the surface and disaggregating the clumps, and analyzing the sample. Of the four steps, harvesting and disaggregation are the least studied but nonetheless critical when considering the potential for test bias. This article demonstrates commonly used harvesting and disaggregation techniques for biofilm grown on three different surfaces. The three biofilm harvesting and disaggregation techniques, gleaned from an extensive literature review, include vortexing and sonication, scraping and homogenization, and scraping, vortexing and sonication. Two surface types are considered: hard non-porous (polycarbonate and borosilicate glass) and porous (silicone). Additionally, we provide recommendations for the minimum information that should be included when reporting the harvesting technique followed and an accompanying method to check for bias.


Assuntos
Biofilmes , Sonicação
10.
J Microbiol Methods ; 196: 106460, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35430326

RESUMO

The development, validation, and use of new quantitative methodologies for testing the effectiveness of antimicrobial products are necessary to meet the regulatory challenges associated with an ever-changing marketplace, novel product claims, new infection control practices, and the emergence of new clinical pathogens. A series of four interlaboratory studies were conducted in a standardized manner on an interim quantitative method for testing liquid treatments against bacteria to assess its statistical performance. The Quantitative Method, a derivative of ASTM E2197, is designed to enumerate the number of viable microbes remaining on a test carrier following exposure to a liquid antimicrobial treatment; a log10 reduction (LR) in viable bacteria is calculated based on the difference between the mean log10 density values of the untreated control and treated carriers. The Quantitative Method uses 1 cm diameter disks (carriers) of brushed stainless steel as the material to represent a hard, non-porous surface. The LR value is used as the measure of product effectiveness, where higher LR values are indicative of greater microbial kill. The test microbes were Staphylococcus aureus, Pseudomonas aeruginosa, and Mycobacterium terrae. The liquid antimicrobial treatments used in these studies were highly relevant to those in the marketplace and provided a wide range of mean LR outcomes. The focus of the statistical assessment was on the repeatability of the LRs across experiments within a lab (Sr) and the reproducibility of the LRs across labs (SR). Due to the additional sources of variability, the SR is expected to be higher than the variability within a laboratory (Sr); this was observed in the studies reported here. Across the studies, the Sr values for LR were small (i.e., less than 0.84), most notably for treatments generating high mean LRs (5 or above) where the Sr was as small as 0.12. Overall, the SR values ranged from 0.227 to 1.217. Only three of the twenty-four treatment combinations over the study period resulted in SR values above 1.0 - the associated LRs for the three treatments ranged from 2.22 to 3.26. Antimicrobial treatments with a LR of 4.5 or higher exhibited SR of 0.561 or less. The statistical attributes reported here for the draft Quantitative Method when used to test P. aeruginosa, S. aureus, and M. terrae provide information for decision makers when considering the method as a candidate regulatory procedure. The data and statistical analyses contained in this report are historical in nature and provide useful baseline information for individuals conducting additional technical review of the method. Based on the data, the Quantitative Method displays a statistical profile consistent with other standard methods approved by standard-setting organizations where method performance data are available.


Assuntos
Anti-Infecciosos , Desinfetantes , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Humanos , Pseudomonas aeruginosa , Reprodutibilidade dos Testes , Staphylococcus aureus
11.
Microorganisms ; 9(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34442788

RESUMO

Shearing stresses are known to be a critical factor impacting the growth and physiology of biofilms, but the underlying fluid dynamics within biofilm reactors are rarely well characterized and not always considered when a researcher decides which biofilm reactor to use. The CDC biofilm reactor is referenced in validated Standard Test Methods and US EPA guidance documents. The driving fluid dynamics within the CDC biofilm reactor were investigated using computational fluid dynamics. An unsteady, three-dimensional model of the CDC reactor was simulated at a rotation rate of 125 RPM. The reactor showed turbulent structures, with shear stresses averaging near 0.365 ± 0.074 Pa across all 24 coupons. The pressure variation on the coupon surfaces was found to be larger, with a continuous 2-3 Pa amplitude, coinciding with the baffle passage. Computational fluid dynamics was shown to be a powerful tool for defining key fluid dynamic parameters at a high fidelity within the CDC biofilm reactor. The consistency of the shear stresses and pressures and the unsteadiness of the flow within the CDC reactor may help explain its reproducibility in laboratory studies. The computational model will enable researchers to make an informed decision whether the fluid dynamics present in the CDC biofilm reactor are appropriate for their research.

12.
Sci Rep ; 11(1): 13779, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215805

RESUMO

Microtiter plate methods are commonly used for biofilm assessment. However, results obtained with these methods have often been difficult to reproduce. Hence, it is important to obtain a better understanding of the repeatability and reproducibility of these methods. An interlaboratory study was performed in five different laboratories to evaluate the reproducibility and responsiveness of three methods to quantify Staphylococcus aureus biofilm formation in 96-well microtiter plates: crystal violet, resazurin, and plate counts. An inter-lab protocol was developed for the study. The protocol was separated into three steps: biofilm growth, biofilm challenge, biofilm assessment. For control experiments participants performed the growth and assessment steps only. For treatment experiments, all three steps were performed and the efficacy of sodium hypochlorite (NaOCl) in killing S. aureus biofilms was evaluated. In control experiments, on the log10-scale, the reproducibility SD (SR) was 0.44 for crystal violet, 0.53 for resazurin, and 0.92 for the plate counts. In the treatment experiments, plate counts had the best responsiveness to different levels of efficacy and also the best reproducibility with respect to responsiveness (Slope/SR = 1.02), making it the more reliable method to use in an antimicrobial efficacy test. This study showed that the microtiter plate is a versatile and easy-to-use biofilm reactor, which exhibits good repeatability and reproducibility for different types of assessment methods, as long as a suitable experimental design and statistical analysis is applied.


Assuntos
Técnicas Bacteriológicas , Biofilmes/crescimento & desenvolvimento , Hipoclorito de Sódio/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Violeta Genciana/farmacologia , Humanos , Oxazinas/farmacologia , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade , Xantenos/farmacologia
13.
Trends Microbiol ; 29(12): 1062-1071, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34088548

RESUMO

Biofilms are complex and dynamic structures that include many more components than just viable cells. Therefore, the apparently simple goal of growing reproducible biofilms is often elusive. One of the challenges in defining reproducibility for biofilm research is that different research fields use a spectrum of parameters to define reproducibility for their particular application. For instance, is the researcher interested in achieving a similar population density, height of biofilm structures, or function of the biofilm in a certain ecosystem/industrial context? Within this article we categorize reproducibility into four different levels: level 1, no reproducibility; level 2, standard reproducibility; level 3, potential standard reproducibility; and level 4, total reproducibility. To better understand the need for these different levels of reproducibility, we expand on the 'cities of microbes' analogy for biofilms by imagining that a new civilization has reached the Earth's outskirts and starts studying the Earth's cities. This will provide a better sense of scale and illustrate how small details can impact profoundly on the growth and behavior of a biofilm and our understanding of reproducibility.


Assuntos
Biofilmes , Ecossistema , Cidades , Humanos , Reprodutibilidade dos Testes
14.
Chem Biol Drug Des ; 97(1): 134-147, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32844569

RESUMO

Prodrugs are pharmacologically attenuated derivatives of drugs that undergo bioconversion into the active compound once reaching the targeted site, thereby maximizing their efficiency. This strategy has been implemented in pharmaceuticals to overcome obstacles related to absorption, distribution, and metabolism, as well as with intracellular dyes to ensure concentration within cells. In this study, we provide the first examples of a prodrug strategy that can be applied to simple phenolic antimicrobials to increase their potency against mature biofilms. The addition of (acetoxy)methyl iminodiacetate groups increases the otherwise modest potency of simple phenols. Biofilm-forming bacteria exhibit a heightened tolerance toward antimicrobial agents, thereby accentuating the need for new antibiotics as well as those, which incorporate novel delivery strategies to enhance activity toward biofilms.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Iminoácidos/química , Fenóis/química , Pró-Fármacos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Fenóis/farmacologia , Pró-Fármacos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia , Relação Estrutura-Atividade
15.
J Microbiol Methods ; 174: 105963, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32454049

RESUMO

A standard method for growing Pseudomonas aeruginosa biofilm in the Drip Flow Biofilm Reactor was assessed in a 10-laboratory study. The mean log density was 9.29 Log10(CFU/cm2). The repeatability and reproducibility SDs were equal to 0.22 and 0.24, respectively, providing statistical confidence in data generated by the method.


Assuntos
Biofilmes/crescimento & desenvolvimento , Reatores Biológicos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Fermentação , Reprodutibilidade dos Testes
16.
Biofilm ; 2: 100010, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33447797

RESUMO

The lack of reproducibility of published studies is one of the major issues facing the scientific community, and the field of biofilm microbiology has been no exception. One effective strategy against this multifaceted problem is the use of minimum information guidelines. This strategy provides a guide for authors and reviewers on the necessary information that a manuscript should include for the experiments in a study to be clearly interpreted and independently reproduced. As a result of several discussions between international groups working in the area of biofilms, we present a guideline for the spectrophotometric and fluorometric assessment of biofilm formation in microplates. This guideline has been divided into 5 main sections, each presenting a comprehensive set of recommendations. The intention of the minimum information guideline is to improve the quality of scientific communication that will augment interlaboratory reproducibility in biofilm microplate assays.

17.
Front Chem ; 7: 653, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632948

RESUMO

Biofilm-forming bacteria present formidable challenges across diverse settings, and there is a need for new antimicrobial agents that are both environmentally acceptable and relatively potent against microorganisms in the biofilm state. The antimicrobial activity of three naturally occurring, low molecular weight, phenols, and their derivatives were evaluated against planktonic and biofilm Staphylococcus epidermidis and Pseudomonas aeruginosa. The structure activity relationships of eugenol, thymol, carvacrol, and their corresponding 2- and 4-allyl, 2-methallyl, and 2- and 4-n-propyl derivatives were evaluated. Allyl derivatives showed a consistent increased potency with both killing and inhibiting planktonic cells but they exhibited a decrease in potency against biofilms. This result underscores the importance of using biofilm assays to develop structure-activity relationships when the end target is biofilm.

18.
J Microbiol Methods ; 165: 105694, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31491442

RESUMO

Methods validated by a standard setting organization enable public, industry and regulatory stakeholders to make decisions on the acceptability of products, devices and processes. This is because standard methods are demonstrably reproducible when performed in different laboratories by different researchers, responsive to different products, and rugged when small (usually inadvertent) variations from the standard procedure occur. The Single Tube Method (ASTM E2871) is a standard method that measures the efficacy of antimicrobials against biofilm bacteria that has been shown to be reproducible, responsive and rugged. In support of the reproducibility assessment, a six-laboratory study was performed using three antimicrobials: a sodium hypochlorite, a phenolic and a quaternary/alcohol blend, each tested at low and high efficacy levels. The mean log reduction in viable bacteria in this study ranged from 2.32 to 4.58 and the associated reproducibility standard deviations ranged from 0.89 to 1.67. Independent follow-up testing showed that the method was rugged with respect to deviations in sonication duration and sonication power but slightly sensitive to sonicator reservoir degassing and tube location within the sonicator bath. It was also demonstrated that when a coupon was dropped into a test tube, bacteria can splash out of reach of the applied antimicrobials, resulting in substantial bias when estimating log reductions for the products tested. Bias can also result when testing products that hinder the harvesting of microbes from test surfaces. The culmination of this work provided recommended changes to the early version of the standard method E2871-13 (ASTM, 2013b) including use of splashguards and microscopy checks. These changes have been incorporated into a revised ASTM method E2871-19 (ASTM 2019) that is the basis for the first regulatory method (ATMP-MB-20) to substantiate "kills biofilm" claims for antimicrobials registered and sold in the US.


Assuntos
Antibacterianos/toxicidade , Biofilmes , Desinfetantes/toxicidade , Pseudomonas aeruginosa , Álcoois/toxicidade , Viés , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Hidroxibenzoatos/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Compostos de Amônio Quaternário/toxicidade , Padrões de Referência , Hipoclorito de Sódio/toxicidade , Propriedades de Superfície
19.
Sci Rep ; 8(1): 12531, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135439

RESUMO

We review reproducibility results for methods that test antimicrobial efficacy against biofilms, spores and bacteria dried onto a surface. Our review, that included test results for Pseudomonas aeruginosa, Salmonella choleraesuis and Bacillus subtilis, suggests that the level of reproducibility depends on the efficacy of the antimicrobial agent being tested for each microbe and microbial environment. To determine the reproducibility of a method, several laboratories must independently test the same antimicrobial agent using the method. Little variability among the efficacy results suggests good reproducibility. Such reproducibility assessments currently are hampered by the absence of an objective process for deciding whether the variability is sufficiently small. We present a quantitative decision process that objectively determines whether any method that assesses antimicrobial efficacy is reproducible. Because the perception of acceptable reproducibility may differ among stakeholders, the decision process is governed by a stakeholder's specifications that necessarily includes the efficacy of the agents to be tested.


Assuntos
Testes de Sensibilidade Microbiana/métodos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana/normas , Pseudomonas aeruginosa/efeitos dos fármacos , Reprodutibilidade dos Testes , Salmonella/efeitos dos fármacos
20.
Crit Rev Biotechnol ; 38(5): 657-670, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28954541

RESUMO

Biofilms can cause severe problems to human health due to the high tolerance to antimicrobials; consequently, biofilm science and technology constitutes an important research field. Growing a relevant biofilm in the laboratory provides insights into the basic understanding of the biofilm life cycle including responses to antibiotic therapies. Therefore, the selection of an appropriate biofilm reactor is a critical decision, necessary to obtain reproducible and reliable in vitro results. A reactor should be chosen based upon the study goals and a balance between the pros and cons associated with its use and operational conditions that are as similar as possible to the clinical setting. However, standardization in biofilm studies is rare. This review will focus on the four reactors (Calgary biofilm device, Center for Disease Control biofilm reactor, drip flow biofilm reactor, and rotating disk reactor) approved by a standard setting organization (ASTM International) for biofilm experiments and how researchers have modified these standardized reactors and associated protocols to improve the study and understanding of medical biofilms.


Assuntos
Biofilmes , Pesquisa Biomédica , Reatores Biológicos , Modelos Biológicos , Animais , Pesquisa Biomédica/instrumentação , Pesquisa Biomédica/normas , Humanos , Técnicas Analíticas Microfluídicas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA