Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(44): e2220771120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871180

RESUMO

Picophytoplankton populations [Prochlorococcus, Synechococcus (SYN), and picoeukaryotes] are dominant primary producers in the open ocean and projected to become more important with climate change. Their fates can vary, however, with microbial food web complexities. In the California Current Ecosystem, picophytoplankton biomass and abundance peak in waters of intermediate productivity and decrease at higher production. Using experimental data from eight cruises crossing the pronounced CCE trophic gradient, we tested the hypothesis that these declines are driven by intensified grazing on heterotrophic bacteria (HBAC) passed to similarly sized picophytoplankton via shared predators. Results confirm previously observed distributions as well as significant increases in bacterial abundance, cell growth, and grazing mortality with primary production. Mortalities of picophytoplankton, however, diverge from the bacterial mortality trend such that relative grazing rates on SYN compared to HBAC decline by 12-fold between low and high productivity waters. The large shifts in mortality rate ratios for coexisting populations are not explained by size variability but rather suggest high selectivity of grazer assemblages or tightly coupled tradeoffs in microbial growth advantages and grazing vulnerabilities. These findings challenge the long-held view that protistan grazing mainly determines overall biomass of microbial communities while viruses uniquely regulate diversity by "killing the winners".


Assuntos
Ecossistema , Synechococcus , Biomassa , Cadeia Alimentar , Oceanos e Mares , Água do Mar/microbiologia
3.
Nat Commun ; 13(1): 2448, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508497

RESUMO

The ecological and oceanographic processes that drive the response of pelagic ocean microbiomes to environmental changes remain poorly understood, particularly in coastal upwelling ecosystems. Here we show that seasonal and interannual variability in coastal upwelling predicts pelagic ocean microbiome diversity and community structure in the Southern California Current region. Ribosomal RNA gene sequencing, targeting prokaryotic and eukaryotic microbes, from samples collected seasonally during 2014-2020 indicate that nitracline depth is the most robust predictor of spatial microbial community structure and biodiversity in this region. Striking ecological changes occurred due to the transition from a warm anomaly during 2014-2016, characterized by intense stratification, to cooler conditions in 2017-2018, representative of more typical upwelling conditions, with photosynthetic eukaryotes, especially diatoms, changing most strongly. The regional slope of nitracline depth exerts strong control on the relative proportion of highly diverse offshore communities and low biodiversity, but highly productive nearshore communities.


Assuntos
Microbiota , Plâncton , Biodiversidade , Ecossistema , Microbiota/genética , Nutrientes , Plâncton/genética , Água do Mar
4.
Glob Chang Biol ; 24(2): 796-809, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29156088

RESUMO

The degree to which ecosystems are regulated through bottom-up, top-down, or direct physical processes represents a long-standing issue in ecology, with important consequences for resource management and conservation. In marine ecosystems, the role of bottom-up and top-down forcing has been shown to vary over spatio-temporal scales, often linked to highly variable and heterogeneously distributed environmental conditions. Ecosystem dynamics in the Northeast Pacific have been suggested to be predominately bottom-up regulated. However, it remains unknown to what extent top-down regulation occurs, or whether the relative importance of bottom-up and top-down forcing may shift in response to climate change. In this study, we investigate the effects and relative importance of bottom-up, top-down, and physical forcing during changing climate conditions on ecosystem regulation in the Southern California Current System (SCCS) using a generalized food web model. This statistical approach is based on nonlinear threshold models and a long-term data set (~60 years) covering multiple trophic levels from phytoplankton to predatory fish. We found bottom-up control to be the primary mode of ecosystem regulation. However, our results also demonstrate an alternative mode of regulation represented by interacting bottom-up and top-down forcing, analogous to wasp-waist dynamics, but occurring across multiple trophic levels and only during periods of reduced bottom-up forcing (i.e., weak upwelling, low nutrient concentrations, and primary production). The shifts in ecosystem regulation are caused by changes in ocean-atmosphere forcing and triggered by highly variable climate conditions associated with El Niño. Furthermore, we show that biota respond differently to major El Niño events during positive or negative phases of the Pacific Decadal Oscillation (PDO), as well as highlight potential concerns for marine and fisheries management by demonstrating increased sensitivity of pelagic fish to exploitation during El Niño.


Assuntos
Mudança Climática , Ecossistema , El Niño Oscilação Sul , Animais , California , Peixes/fisiologia
5.
Proc Natl Acad Sci U S A ; 114(6): 1252-1257, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115723

RESUMO

Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C⋅m-2⋅d-1) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ∼225 mg C⋅m-2⋅d-1 was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.

6.
Proc Biol Sci ; 283(1822)2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26763697

RESUMO

The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and ecosystem functioning (BEF). Although broad consensus has been reached regarding the positive BEF relationship, a number of important challenges remain unanswered. These primarily concern the underlying mechanisms by which diversity increases resilience and community stability, particularly the relative importance of statistical averaging and functional complementarity. Our understanding of these mechanisms relies heavily on theoretical and experimental studies, yet the degree to which theory adequately explains the dynamics and stability of natural ecosystems is largely unknown, especially in marine ecosystems. Using modelling and a unique 60-year dataset covering multiple trophic levels, we show that the pronounced multi-decadal variability of the Southern California Current System (SCCS) does not represent fundamental changes in ecosystem functioning, but a linear response to key environmental drivers channelled through bottom-up and physical control. Furthermore, we show strong temporal asynchrony between key species or functional groups within multiple trophic levels caused by opposite responses to these drivers. We argue that functional complementarity is the primary mechanism reducing community variability and promoting resilience and stability in the SCCS.


Assuntos
Organismos Aquáticos/fisiologia , Biodiversidade , Modelos Teóricos , California , Cadeia Alimentar , Oceano Pacífico/epidemiologia , Fatores de Tempo , Movimentos da Água
7.
J Phycol ; 50(2): 303-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26988187

RESUMO

Microalgal strains for algal biofuels production in outdoor ponds will need to have high net growth rates under diverse environmental conditions. A small, variable salinity pond in the San Elijo Lagoon estuary in southern California was chosen to serve as a model pond due to its routinely high chlorophyll content. Profiles of microalgal assemblages from water samples collected from April 2011 to January 2012 were obtained by constructing 18S rDNA environmental clone libraries. Pond assemblages were found to be dominated by green algae Picochlorum sp. and Picocystis sp. throughout the year. Pigment analysis suggested that the two species contributed most of the chlorophyll a of the pond, which ranged from 21.9 to 664.3 µg · L(-1) with the Picocystis contribution increasing at higher salinities. However, changes of temperature, salinity or irradiance may have enabled a bloom of the diatom Chaetoceros sp. in June 2011. Isolates of these microalgae were obtained and their growth rates characterized as a function of temperature and salinity. Chaetoceros sp. had the highest growth rate over the temperature test range while it showed the most sensitivity to high salinity. All three strains showed the presence of lipid bodies during nitrogen starvation, suggesting they have potential as future biofuels strains.

8.
Sci Rep ; 2: 240, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22355753

RESUMO

Climate change driven increases in intensity and frequency of both hot and cold extreme events contribute to coral reef decline by causing widespread coral bleaching and mortality. Here, we show that hot and cold temperature changes cause distinct physiological responses on different time scales in reef-building corals. We exposed the branching coral Acropora yongei in individual aquaria to a ± 5°C temperature change. Compared to heat-treated corals, cold-treated corals initially show greater declines in growth and increases in photosynthetic pressure. However, after 2-3 weeks, cold-treated corals acclimate and show improvements in physiological state. In contrast, heat did not initially harm photochemical efficiency, but after a delay, photosynthetic pressure increased rapidly and corals experienced severe bleaching and cessation of growth. These results suggest that short-term cold temperature is more damaging for branching corals than short-term warm temperature, whereas long-term elevated temperature is more harmful than long-term depressed temperature.


Assuntos
Antozoários/fisiologia , Temperatura Baixa , Temperatura Alta , Adaptação Fisiológica , Animais , Antozoários/crescimento & desenvolvimento , Clorofila/fisiologia , Fluorescência
9.
J Exp Biol ; 213(Pt 21): 3644-55, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20952612

RESUMO

Reef-building corals inhabit high light environments and are dependent on photosynthetic endosymbiotic dinoflagellates for nutrition. While photoacclimation responses of the dinoflagellates to changes in illumination are well understood, host photoacclimation strategies are poorly known. This study investigated fluorescent protein expression in the shallow-water coral Acropora yongei during a 30 day laboratory photoacclimation experiment in the context of its dinoflagellate symbionts. Green fluorescent protein (GFP) concentration measured by Western blotting changed reversibly with light intensity. The first 15 days of the photoacclimation experiment led to a ∼1.6 times increase in GFP concentration for high light corals (900 µmol quanta m⁻² s⁻¹) and a ∼4 times decrease in GFP concentration for low light corals (30 µmol quanta m⁻² s⁻¹) compared with medium light corals (300 µmol quanta m⁻² s⁻¹). Green fluorescence increased ∼1.9 times in high light corals and decreased ∼1.9 times in low light corals compared with medium light corals. GFP concentration and green fluorescence intensity were significantly correlated. Typical photoacclimation responses in the dinoflagellates were observed including changes in density, photosynthetic pigment concentration and photosynthetic efficiency. Although fluorescent proteins are ubiquitous and abundant in scleractinian corals, their functions remain ambiguous. These results suggest that scleractinian corals regulate GFP to modulate the internal light environment and support the hypothesis that GFP has a photoprotective function. The success of photoprotection and photoacclimation strategies, in addition to stress responses, will be critical to the fate of scleractinian corals exposed to climate change and other stressors.


Assuntos
Aclimatação/fisiologia , Antozoários/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Fenômenos Ópticos , Aclimatação/efeitos da radiação , Análise de Variância , Animais , Antozoários/crescimento & desenvolvimento , Antozoários/efeitos da radiação , Dinoflagellida/fisiologia , Dinoflagellida/efeitos da radiação , Fluorescência , Luz , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo
10.
Environ Sci Technol ; 38(20): 5373-8, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15543739

RESUMO

Chromophoric or colored dissolved organic matter (CDOM) is one of the principal light adsorbing components of seawater, particularly in the ultraviolet, where it attenuates over 90% of downwelling ultraviolet radiation. In highly productive coastal regions and throughout most of the global ocean, in situ biological production is the major source of CDOM. However, little is known about CDOM composition on the molecular level, and there are only a few reports that link CDOM composition to autochthonous biological sources. Here we report the isolation and characterization of CDOM components from one coastal and two open-ocean sites. Each sample contains a complex mixture of light absorbing (300-400 nm) components, including 2,4-dichlorobenzoic acid and a suite of novel, polychlorinated biphenyl carboxylic acids that closely resemble polychlorinated biphenyls (PCBs) of anthropogenic origin. However, the global inventory and isomer distribution of dissolved chlorinated aromatic acids suggest they are derived from in situ biological production rather than anthropogenic contaminants. These novel chlorinated aromatic acids account for a significant amount of CDOM adsorption in the ultraviolet.


Assuntos
Ácidos Carboxílicos/análise , Clorobenzoatos/análise , Bifenilos Policlorados/análise , Água do Mar/análise , Adsorção , Oceano Atlântico , Ácidos Carboxílicos/química , Clorobenzoatos/química , Substâncias Húmicas/análise , Estrutura Molecular , Oceano Pacífico , Fotoquímica , Bifenilos Policlorados/química , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA