Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203480

RESUMO

Pneumonia caused by multi-drug-resistant Klebsiella pneumoniae (MDR-Kpneu) poses a major public health threat, especially to immunocompromised or hospitalized patients. This study aimed to determine the immunostimulatory effect of the Toll-like receptor 5 ligand flagellin on primary human lung epithelial cells during infection with MDR-Kpneu. Human bronchial epithelial (HBE) cells, grown on an air-liquid interface, were inoculated with MDR-Kpneu on the apical side and treated during ongoing infection with antibiotics (meropenem) and/or flagellin on the basolateral and apical side, respectively; the antimicrobial and inflammatory effects of flagellin were determined in the presence or absence of meropenem. In the absence of meropenem, flagellin treatment of MDR-Kpneu-infected HBE cells increased the expression of antibacterial defense genes and the secretion of chemokines; moreover, supernatants of flagellin-exposed HBE cells activated blood neutrophils and monocytes. However, in the presence of meropenem, flagellin did not augment these responses compared to meropenem alone. Flagellin did not impact the outgrowth of MDR-Kpneu. Flagellin enhances antimicrobial gene expression and chemokine release by the MDR-Kpneu-infected primary human bronchial epithelium, which is associated with the release of mediators that activate neutrophils and monocytes. Topical flagellin therapy may have potential to boost immune responses in the lung during pneumonia.


Assuntos
Klebsiella , Pneumonia , Humanos , Flagelina/farmacologia , Meropeném/farmacologia , Células Epiteliais , Antibacterianos/farmacologia
2.
Front Microbiol ; 13: 887420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814653

RESUMO

New and rapid antimicrobial susceptibility/resistance testing methods are required for bacteria from positive blood cultures. In this study, a multiplex-targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed and validated for the detection of ß-lactam, aminoglycoside, and fluoroquinolone resistance mechanisms in blood cultures growing Escherichia coli or Klebsiella pneumoniae complex. Selected targets were the ß-lactamases SHV, TEM, OXA-1-like, CTX-M-1-like, CMY-2-like, chromosomal E. coli AmpC (cAmpC), OXA-48-like, NDM, VIM, and KPC; the aminoglycoside-modifying enzymes AAC(3)-Ia, AAC(3)-II, AAC(3)-IV, AAC(3)-VI, AAC(6')-Ib, ANT(2 ' ' )-I, and APH(3')-VI; the 16S-RMTases ArmA, RmtB, RmtC, and RmtF; the quinolone resistance mechanisms QnrA, QnrB, AAC(6')-Ib-cr; the wildtype quinolone resistance determining region of GyrA; and the E. coli porins OmpC and OmpF. The developed assay was evaluated using 100 prospectively collected positive blood cultures, and 148 negative blood culture samples spiked with isolates previously collected from blood cultures or isolates carrying less prevalent resistance mechanisms. The time to result was approximately 3 h. LC-MS/MS results were compared with whole-genome sequencing and antimicrobial susceptibility testing results. Overall, there was a high agreement between LC-MS/MS results and whole-genome sequencing results. In addition, the majority of susceptible and non-susceptible phenotypes were correctly predicted based on LC-MS/MS results. Exceptions were the predictions for ciprofloxacin and amoxicillin/clavulanic acid that matched with the phenotype in 85.9 and 63.7% of the isolates, respectively. Targeted LC-MS/MS based on parallel reaction monitoring can be applied for the rapid and accurate detection of various resistance mechanisms in blood cultures growing E. coli or K. pneumoniae complex.

3.
Microb Drug Resist ; 28(6): 636-644, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35587639

RESUMO

Background: Acinetobacter baumannii can cause difficult-to-treat infections because it can acquire extensive antimicrobial resistance mechanisms. We aim to describe the antimicrobial resistance pattern and the genetic basis of carbapenem-nonsusceptible A. baumannii isolates in a University Hospital in Romania, a country where multidrug-resistant A. baumannii is widespread. Methods: We collected 104 consecutive meropenem-nonsusceptible A. baumannii isolates from 104 patients (36% female, mean age [SD] of 63 [16] years) between May 2015 and August 2017 from a large tertiary center in Romania. Whole-genome sequencing of representative isolates from amplified fragment length polymorphism clusters was used to determine clonality and resistance patterns. Results: All isolates were resistant to piperacillin/tazobactam, ceftazidime, and ciprofloxacin; 88.5% to gentamicin; and 90.4% to trimethoprim/sulfamethoxazole. In contrast, 79.8% and 99.0% were susceptible to tobramycin and colistin, respectively. The only isolate resistant to colistin had an minimum inhibitory concentration (MIC) of ≥16 mg/L. The blaOXA-24 gene was detected in 79.1% and blaOXA-23 in 20.9% of the isolates. In one isolate, blaOXA-23 was copresent with blaOXA-24. ST502 (Oxford scheme) was the most prevalent sequence type and was exclusively associated with blaOXA-24. Conclusions: ST502 associated with blaOXA-24 was frequently observed in the region where carbapenem-nonsusceptible A. baumannii was found to be endemic. In these isolates, tobramycin and colistin might be the remaining therapeutic options. Due to differences in gentamicin and tobramycin resistance in these isolates, surveillance data should not group gentamicin, tobramycin, and amikacin together as aminoglycosides.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecção Hospitalar , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/epidemiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Antibacterianos/farmacologia , Proteínas de Bactérias , Carbapenêmicos/farmacologia , Colistina/farmacologia , Infecção Hospitalar/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Gentamicinas/farmacologia , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Prevalência , Romênia/epidemiologia , Tobramicina , beta-Lactamases/genética
4.
Front Microbiol ; 13: 793738, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295306

RESUMO

While Extended-Spectrum ß-Lactamases (ESBL) and AmpC ß-lactamases barely degrade carbapenem antibiotics, they are able to bind carbapenems and prevent them from interacting with penicillin-binding proteins, thereby inhibiting their activity. Further, it has been shown that Enterobacterales can become resistant to carbapenems when high concentrations of ESBL and AmpC ß-lactamases are present in the bacterial cell in combination with a decreased influx of antibiotics (due to a decrease in porins and outer-membrane permeability). In this study, a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed for the detection of the Escherichia coli porins OmpC and OmpF, its chromosomal AmpC ß-lactamase, and the plasmid-mediated CMY-2 ß-lactamase. Bla CMY-2-like positive E. coli isolates were cultured in the presence of increasing concentrations of meropenem, and resistant mutants were analyzed using the developed LC-MS/MS assay, Western blotting, and whole genome sequencing. In five strains that became meropenem resistant, a decrease in OmpC and/or OmpF (caused by premature stop codons or gene interruptions) was the first event toward meropenem resistance. In four of these strains, an additional increase in MICs was caused by an increase in CMY-2 production, and in one strain this was most likely caused by an increase in CTX-M-15 production. The LC-MS/MS assay developed proved to be suitable for the (semi-)quantitative analysis of CMY-2-like ß-lactamases and porins within 4 h. Targeted LC-MS/MS could have additional clinical value in the early detection of non-carbapenemase-producing carbapenem-resistant E. coli.

5.
Sci Rep ; 11(1): 12472, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127720

RESUMO

Antimicrobial resistance is mostly studied by means of phenotypic growth inhibition determinations, in combination with PCR confirmations or further characterization by means of whole genome sequencing (WGS). However, the actual proteins that cause resistance such as enzymes and a lack of porins cannot be detected by these methods. Improvements in liquid chromatography (LC) and mass spectrometry (MS) enabled easier and more comprehensive proteome analysis. In the current study, susceptibility testing, WGS and MS are combined into a multi-omics approach to analyze resistance against frequently used antibiotics within the beta-lactam, aminoglycoside and fluoroquinolone group in E. coli and K. pneumoniae. Our aim was to study which currently known mechanisms of resistance can be detected at the protein level using liquid chromatography-mass spectrometry (LC-MS/MS) and to assess whether these could explain beta-lactam, aminoglycoside, and fluoroquinolone resistance in the studied isolates. Furthermore, we aimed to identify significant protein to resistance correlations which have not yet been described before and to correlate the abundance of different porins in relation to resistance to different classes of antibiotics. Whole genome sequencing, high-resolution LC-MS/MS and antimicrobial susceptibility testing by broth microdilution were performed for 187 clinical E. coli and K. pneumoniae isolates. Resistance genes and proteins were identified using the Comprehensive Antibiotic Resistance Database (CARD). All proteins were annotated using the NCBI RefSeq database and Prokka. Proteins of small spectrum beta-lactamases, extended spectrum beta-lactamases, AmpC beta-lactamases, carbapenemases, and proteins of 16S ribosomal RNA methyltransferases and aminoglycoside acetyltransferases can be detected in E. coli and K. pneumoniae by LC-MS/MS. The detected mechanisms matched with the phenotype in the majority of isolates. Differences in the abundance and the primary structure of other proteins such as porins also correlated with resistance. LC-MS/MS is a different and complementary method which can be used to characterize antimicrobial resistance in detail as not only the primary resistance causing mechanisms are detected, but also secondary enhancing resistance mechanisms.


Assuntos
Proteínas de Bactérias/análise , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica , Proteogenômica/métodos , beta-Lactamases/análise , Acetiltransferases/análise , Acetiltransferases/genética , Acetiltransferases/metabolismo , Sequência de Aminoácidos , Aminoglicosídeos/farmacologia , Aminoglicosídeos/uso terapêutico , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Metiltransferases/análise , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Ribossômico 16S/metabolismo , Espectrometria de Massas em Tandem/métodos , Sequenciamento Completo do Genoma , beta-Lactamases/genética , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico
6.
J Clin Microbiol ; 59(7): e0046421, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33910961

RESUMO

New and rapid diagnostic methods are needed for the detection of antimicrobial resistance to aid in curbing drug-resistant infections. Targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a method that could serve this purpose, as it can detect specific peptides of antimicrobial resistance mechanisms with high accuracy. In the current study, we developed an accurate and rapid targeted LC-MS/MS assay based on parallel reaction monitoring for detection of the most prevalent aminoglycoside-modifying enzymes and 16S rRNA methyltransferases in Escherichia coli and Klebsiella pneumoniae that confer resistance to aminoglycosides. Specific tryptic peptides needed for detection were selected and validated for AAC(3)-Ia, AAC(3)-II, AAC(3)-IV, AAC(3)-VI, AAC(6')-Ib, AAC(6')-Ib-cr, ANT(2″)-I, APH(3')-VI, ArmA, RmtB, RmtC, and RmtF. In total, 205 isolates containing different aminoglycoside resistance mechanisms that consisted mostly of E. coli and K. pneumoniae were selected for assay development and evaluation. Mass spectrometry results were automatically analyzed and were compared to whole-genome sequencing results. Of the 2,460 isolate and resistance mechanism combinations tested, 2,416 combinations matched. Discrepancies were further analyzed by repeating LC-MS/MS analysis and performing additional PCRs. Mass spectrometry results were also used to predict resistance and susceptibility to gentamicin, tobramycin, and amikacin in only the E. coli and K. pneumoniae isolates (n = 191). The category interpretations were correctly predicted for gentamicin in 97.4% of the isolates, for tobramycin in 97.4% of the isolates, and for amikacin in 82.7% of the isolates. Targeted LC-MS/MS can be applied for accurate and rapid detection of aminoglycoside resistance mechanisms.


Assuntos
Aminoglicosídeos , Escherichia coli , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Cromatografia Líquida , Farmacorresistência Bacteriana , Escherichia coli/genética , Humanos , Metiltransferases/genética , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem
7.
Ann Clin Microbiol Antimicrob ; 19(1): 42, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928253

RESUMO

Colistin is considered as one of the last-resort antibiotics and reliable antimicrobial susceptibility testing is therefore crucial. The reference standard for AST according to EUCAST and CLSI is broth microdilution (BMD). However, BMD is labor intensive to perform. Commercial antimicrobial susceptibility tests derived from BMD method are available. We investigated the performance of four different commercial tests: Sensititre™, SensiTest™ Colistin, Micronaut MIC Strip Colistin and UMIC Colistin using 70 clinical isolates (half of them was deemed by VITEK2 as resistant), including isolates from cystic fibrosis patients and mcr-1 bearing isolates. We used two reference standards: BMD and composite MIC as determined by all four tests. Sensititre™ had essential agreement (EA, defined as minimum inhibitory concentration within ± 1 dilution) of 87% and 89% compared to BMD and composite reference standard, respectively. For SensiTest™, the EA's were 93% and 90%. For UMIC, 87% and 90%, and for Micronaut, 83% and 84%. All four tests demonstrated categorical agreement (CA) above 90%. CA for SensiTest™ and Micronaut was both 96%, UMIC 94%, and Sensititre™ 93%. All tests were reproducible as tested in two quality control isolates. In conclusion, in clinical isolates from a large referral center, the four commercial tests for determination of colistin minimum inhibitory concentrations showed acceptable performance.


Assuntos
Antibacterianos/farmacocinética , Colistina/farmacologia , Testes de Sensibilidade Microbiana/métodos , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana/genética , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Artigo em Inglês | MEDLINE | ID: mdl-32540976

RESUMO

Antimicrobial peptides (AMPs) have seen limited clinical use as antimicrobial agents, largely due to issues relating to toxicity, short biological half-life, and lack of efficacy against Gram-negative bacteria. However, the development of novel AMP-nanomedicines, i.e., AMPs entrapped in nanoparticles, has the potential to ameliorate these clinical problems. The authors investigated two novel nanomedicines based on AA139, an AMP currently in development for the treatment of multidrug-resistant Gram-negative infections. AA139 was entrapped in polymeric nanoparticles (PNPs) or lipid-core micelles (MCLs). The antimicrobial activity of AA139-PNP and AA139-MCL was determined in vitro The biodistribution and limiting doses of AA139-nanomedicines were determined in uninfected rats via endotracheal aerosolization. The early bacterial killing activity of the AA139-nanomedicines in infected lungs was assessed in a rat model of pneumonia-septicemia caused by extended-spectrum ß-lactamase-producing Klebsiella pneumoniae In this model, the therapeutic efficacy was determined by once-daily (q24h) administration over 10 days. Both AA139-nanomedicines showed equivalent in vitro antimicrobial activities (similar to free AA139). In uninfected rats, they exhibited longer residence times in the lungs than free AA139 (∼20% longer for AA139-PNP and ∼80% longer for AA139-MCL), as well as reduced toxicity, enabling a higher limiting dose. In rats with pneumonia-septicemia, both AA139-nanomedicines showed significantly improved therapeutic efficacy in terms of an extended rat survival time, although survival of all rats was not achieved. These results demonstrate potential advantages that can be achieved using AMP-nanomedicines. AA139-PNP and AA139-MCL may be promising novel therapeutic agents for the treatment of patients suffering from multidrug-resistant Gram-negative pneumonia-septicemia.


Assuntos
Bacteriemia , Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella/tratamento farmacológico , Pneumonia Bacteriana , Proteínas Citotóxicas Formadoras de Poros , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Nanomedicina , Pneumonia Bacteriana/tratamento farmacológico , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Ratos , Distribuição Tecidual
10.
Antimicrob Resist Infect Control ; 9(1): 61, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393386

RESUMO

OBJECTIVE: A prospective observational study was performed to assess the epidemiology and clinical impact of carbapenem-non-susceptible Klebsiella pneumoniae (CNKP) in intensive care units (ICUs) of the national referral hospital in Jakarta, Indonesia. MATERIALS/METHODS: Adult patients consecutively hospitalized for > 48 h in two ICUs of the national referral hospital were included from April until October 2013 and from April until August 2014. K. pneumoniae from clinical cultures and standardized screening of rectum and throat on admission, discharge and weekly if hospitalized > 7 days were collected. Environmental niches and healthcare workers (HCWs) were also screened. Susceptibility was determined phenotypically and the presence of carbapenemase genes by PCR. Raman spectroscopy as well as multiple-locus variable number tandem repeat analysis (MLVA) were used for typing. RESULTS: Twenty-two out of 412 (5.3%) patients carried CNKP on admission and 37/390 (9.5%) acquired CNKP during ICU stay. The acquisition rate was 24.7/1000 patient-days at risk. One out of 31 (3.2%) environmental isolates was a CNKP. None of the HCWs carried CNKP. Acquisition of CNKP was associated with longer ICU stay (adjusted Hazard Ratio: 2.32 [CI99: 1.35-3.68]). ICU survival was lower among patients with CNKP compared to patients with carbapenem-susceptible K. pneumoniae (aHR 2.57, p = 0.005). Ninety-six of the 100 (96%) CNKP isolates carried a carbapenemase gene, predominantly blaNDM. Raman typing revealed three major clusters among 48 Raman types identified, whereas MLVA distinguished six major clusters among a total of 30 different genotypes. CONCLUSIONS: NDM-producing CNKP are introduced into these ICUs and some strains expand clonally among patients and the environment, resulting in endemic CNKP. CNKP acquisition was associated with prolonged ICU stay and may affect ICU survival. TRIAL REGISTRATION: The study was registered at Netherlands Trial Register http://www.trialregister.nl. Candidate number: 23527, NTR number: NTR5541, NL number: NL5425 (https://www.trialregister.nl/trial/5424), Retrospectively registered: NTR: 22 December 2015.


Assuntos
Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , Infecção Hospitalar/epidemiologia , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/isolamento & purificação , beta-Lactamases/metabolismo , Adulto , Infecção Hospitalar/microbiologia , Feminino , Humanos , Indonésia/epidemiologia , Unidades de Terapia Intensiva , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/metabolismo , Tempo de Internação , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Faringe/microbiologia , Estudos Prospectivos , Reto/microbiologia
11.
Antibiotics (Basel) ; 9(3)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138210

RESUMO

Background: Recent scientific reports on the use of high dose tigecycline monotherapy as a "drug of last resort" warrant further research into the use of this regimen for the treatment of severe multidrug-resistant, Gram-negative bacterial infections. In the current study, the therapeutic efficacy of tigecycline monotherapy was investigated and compared to meropenem monotherapy in a newly developed rat model of fatal lobar pneumonia-septicemia. Methods: A Klebsiella pneumoniae producing extended-spectrum ß-lactamase (ESBL) and an isogenic variant producing K. pneumoniae carbapenemase (KPC) were used in the study. Both strains were tested for their in vitro antibiotic susceptibility and used to induce pneumonia-septicemia in rats, which was characterized using disease progression parameters. Therapy with tigecycline or meropenem was initiated at the moment that rats suffered from progressive infection and was administered 12-hourly over 10 days. The pharmacokinetics of meropenem were determined in infected rats. Results: In rats with ESBL pneumonia-septicemia, the minimum dosage of meropenem achieving survival of all rats was 25 mg/kg/day. However, in rats with KPC pneumonia-septicemia, this meropenem dosage was unsuccessful. In contrast, all rats with KPC pneumonia-septicemia were successfully cured by administration of high-dose tigecycline monotherapy of 25 mg/kg/day (i.e., the minimum tigecycline dosage achieving 100% survival of rats with ESBL pneumonia-septicemia in a previous study). Conclusions: The current study supports recent literature recommending high-dose tigecycline as a last resort regimen for the treatment of severe multidrug-resistant bacterial infections. The use of ESBL- and KPC-producing K. pneumoniae strains in the current rat model of pneumonia-septicemia enables further investigation, helping provide supporting data for follow-up clinical trials in patients suffering from severe multidrug-resistant bacterial respiratory infections.

12.
Antimicrob Resist Infect Control ; 9(1): 39, 2020 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32087747

RESUMO

BACKGROUND: Neonatal Staphylococcus aureus (S. aureus) bacteremia is an important cause of morbidity and mortality. In this study, we examined whether methicillin-susceptible S. aureus (MSSA) transmission and genetic makeup contribute to the occurrence of neonatal S. aureus bacteremia. METHODS: A retrospective, single-centre study was performed. All patients were included who suffered from S. aureus bacteremia in the neonatal intensive care unit (NICU), Erasmus MC-Sophia, Rotterdam, the Netherlands, between January 2011 and November 2017. Whole-genome sequencing (WGS) was used to characterize the S. aureus isolates, as was also done in comparison to reference genomes. Transmission was considered likely in case of genetically indistinguishable S. aureus isolates. RESULTS: Excluding coagulase-negative staphylococci (CoNS), S. aureus was the most common cause of neonatal bacteremia. Twelve percent (n = 112) of all 926 positive blood cultures from neonates grew S. aureus. Based on core genome multilocus sequence typing (cgMLST), 12 clusters of genetically indistinguishable MSSA isolates were found, containing 33 isolates in total (2-4 isolates per cluster). In seven of these clusters, at least two of the identified MSSA isolates were collected within a time period of one month. Six virulence genes were present in 98-100% of all MSSA isolates. In comparison to S. aureus reference genomes, toxin genes encoding staphylococcal enterotoxin A (sea) and toxic shock syndrome toxin 1 (tsst-1) were present more often in the genomes of bacteremia isolates. CONCLUSION: Transmission of MSSA is a contributing factor to the occurrence of S. aureus bacteremia in neonates. Sea and tsst-1 might play a role in neonatal S. aureus bacteremia.


Assuntos
Bacteriemia/transmissão , Infecção Hospitalar/transmissão , Infecções Estafilocócicas/transmissão , Staphylococcus aureus/patogenicidade , Sequenciamento Completo do Genoma/métodos , Bacteriemia/microbiologia , Toxinas Bacterianas/genética , Técnicas de Tipagem Bacteriana , Infecção Hospitalar/microbiologia , Enterotoxinas/genética , Feminino , Genoma Bacteriano , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Masculino , Tipagem de Sequências Multilocus , Países Baixos/epidemiologia , Estudos Retrospectivos , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação , Superantígenos/genética , Virulência
13.
Microb Drug Resist ; 26(4): 341-348, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31657651

RESUMO

Background: Fourth-generation cephalosporins have been developed to improve their potency, that is, low minimal inhibitory concentrations (MICs) and to prevent resistance selection of derepressed AmpC-producing mutants in comparison to third-generation cephalosporins as ceftazidime. Objectives: We investigated the role of the administered cefpirome dose on the efficacy of treatment of a Klebsiella pneumoniae lung infection as well as in the selection of resistant Enterobacter cloacae isolates in the intestines of rats treated for a K. pneumoniae lung infection. Materials and Methods: Rats with K. pneumoniae lung infection received therapy with cefpirome doses of 0.4 to 50 mg/kg/day b.i.d. for 18 days. Resistance selection in intestinal E. cloacae was monitored during 43 days. Mutants were checked for ß-lactamase activity, mutations in their structural ampC gene, ampD gene, and omp39-40 gene. Results: A 45% and 100% rat survival rate was obtained by administration of 3.1 and 12.5 mg/kg b.i.d. of cefpirome. A significant correlation was demonstrated in the reduction of the susceptible E. cloacae isolates with %fT>MIC at days 7, 14, 22, and 29. Cefpirome E. cloacae mutants, with increased cefpirome MICs, were obtained in only four rats. Conclusions: The treatment with cefpirome resulted in less selection of derepressed mutants in comparison to ceftazidime as shown by their low number per gram of feces and in a limited number of animals.


Assuntos
Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Enterobacter cloacae/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Animais , Ceftazidima/farmacologia , Enterobacter cloacae/metabolismo , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/metabolismo , Klebsiella pneumoniae/metabolismo , Masculino , Testes de Sensibilidade Microbiana/métodos , Ratos , beta-Lactamases/metabolismo , Cefpiroma
14.
Front Microbiol ; 10: 2760, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849899

RESUMO

BACKGROUND: At present, phenotypic growth inhibition techniques are used in routine diagnostic microbiology to determine antimicrobial resistance of bacteria. Molecular techniques such as PCR are often used for confirmation but are indirect as they detect particular resistance genes. A direct technique would be able to detect the proteins of the resistance mechanism itself. In the present study targeted high resolution mass spectrometry assay was developed for the simultaneous detection of KPC, OXA-48-like, NDM, and VIM carbapenemases. METHODS: Carbapenemase specific target peptides were defined by comparing available sequences in GenBank. Selected peptide sequences were validated using 62 Klebsiella pneumoniae and Escherichia coli isolates containing: 16 KPC, 21 OXA-48-like, 16 NDM, 13 VIM genes, and 21 carbapenemase negative isolates. RESULTS: For each carbapenemase, two candidate peptides were validated. Method validation was performed in a blinded manner for all 83 isolates. All carbapenemases were detected. The majority was detected by both target peptides. All target peptides were 100% specific in the tested isolates and no peptide carry-over was detected. CONCLUSION: The applied targeted bottom-up mass spectrometry technique is able to accurately detect the four most prevalent carbapenemases in a single analysis.

15.
mBio ; 10(6)2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719179

RESUMO

Infection control effectiveness evaluations require detailed epidemiological and microbiological data. We analyzed the genomic profiles of carbapenem-nonsusceptible Pseudomonas aeruginosa (CNPA) strains collected from two intensive care units (ICUs) in the national referral hospital in Jakarta, Indonesia, where a multifaceted infection control intervention was applied. We used clinical data combined with whole-genome sequencing (WGS) of systematically collected CNPA to infer the transmission dynamics of CNPA strains and to characterize their resistome. We found that the number of CNPA transmissions and acquisitions by patients was highly variable over time but that, overall, the rates were not significantly reduced by the intervention. Environmental sources were involved in these transmissions and acquisitions. Four high-risk international CNPA clones (ST235, ST823, ST357, and ST446) dominated, but the distribution of these clones changed significantly after the intervention was implemented. Using resistome analysis, carbapenem resistance was explained by the presence of various carbapenemase-encoding genes (blaGES-5, blaVIM-2-8, and blaIMP-1-7-43) and by mutations within the porin OprD. Our results reveal for the first time the dynamics of P. aeruginosa antimicrobial resistance (AMR) profiles in Indonesia and additionally show the utility of WGS in combination with clinical data to evaluate the impact of an infection control intervention. (This study has been registered at www.trialregister.nl under registration no. NTR5541).IMPORTANCE In low-to-middle-income countries such as Indonesia, work in intensive care units (ICUs) can be hampered by lack of resources. Conducting large epidemiological studies in such settings using genomic tools is rather challenging. Still, we were able to systematically study the transmissions of carbapenem-nonsusceptible strains of P. aeruginosa (CNPA) within and between ICUs, before and after an infection control intervention. Our data show the importance of the broad dissemination of the internationally recognized CNPA clones, the relevance of environmental reservoirs, and the mixed effects of the implemented intervention; it led to a profound change in the clonal make-up of CNPA, but it did not reduce the patients' risk of CNPA acquisitions. Thus, CNPA epidemiology in Indonesian ICUs is part of a global expansion of multiple CNPA clones that remains difficult to control by infection prevention measures.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Unidades de Terapia Intensiva , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Humanos , Indonésia/epidemiologia , Controle de Infecções , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/classificação , Curva ROC
16.
Int J Antimicrob Agents ; 54(5): 655-660, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31398483

RESUMO

The aim of this study was to describe the epidemiology and clinical impact of carbapenem-non-susceptible Pseudomonas aeruginosa (CNPA) in intensive care units (ICUs) of the national referral hospital of Indonesia. Adult patients admitted to ICUs were prospectively included. Pseudomonas aeruginosa were from clinical cultures and systematic screening. Environmental niches and healthcare workers (HCWs) were also screened. Susceptibility was determined phenotypically and the presence of carbapenemase genes was determined by PCR. Multiple loci variable-number tandem repeat analysis (MLVA) and multilocus sequence typing (MLST) were used for genotyping. Of the patients included in the study, 17/412 (4.1%) carried CNPA on admission and 34/395 (8.6%) became positive during their ICU stay. The acquisition rate was 18/1000 patient-days at risk. Of 16 environmental isolates, 12 (75.0%) were CNPA. HCWs screened negative. Acquisition of CNPA was associated with longer ICU stay (adjusted hazard ratio = 1.89, 99% confidence interval 1.12-3.13). Mortality was >40% among patients with CNPA versus <30% among those without CNPA (P = 0.019). Moreover, 83/119 (69.7%) CNPA carried either blaVIM (n = 36), blaIMP (n = 23) or blaGES-5 (n = 24). Four sequence types (STs) dominated (ST235, ST823, ST446 and ST357). Five major MLVA clusters were distinguished, two belonging to ST235 and the other three to ST823, ST446 and ST357. CNPA are introduced into these ICUs and some strains expand clonally among patients and the environment, creating endemic CNPA. VIM-, IMP- and GES-5 genes are prevalent. CNPA acquisition was associated with prolonged ICU stay and may affect ICU survival.


Assuntos
Antibacterianos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/epidemiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Adulto , Proteínas de Bactérias/genética , Carbapenêmicos/uso terapêutico , DNA Bacteriano/genética , Feminino , Humanos , Indonésia/epidemiologia , Controle de Infecções/métodos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Estudos Prospectivos , Pseudomonas aeruginosa/isolamento & purificação , beta-Lactamases/genética
17.
Int J Antimicrob Agents ; 54(2): 159-166, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31173867

RESUMO

Colistin is an antimicrobial peptide (AMP) used as a drug of last resort, although plasmid-mediated colistin resistance (MCR) has been reported. AA139 and SET-M33 are novel AMPs currently in development for the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections. As many AMPs have a similar mode of action to colistin, potentially leading to cross-resistance, the antimicrobial activity of AA139 and SET-M33 was investigated against a collection of 50 clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles, including colistin-resistant strains. The collection was genotypically characterised and susceptibility to clinically relevant antibiotics was determined. Susceptibility to AA139 and SET-M33 did not differ among the collection despite differences in underlying mechanisms of resistance or susceptibility to colistin. For three colistin-susceptible and three colistin-resistant strains with distinct MDR profiles as well as an additional MCR-producing strain, the bactericidal activity of AA139, SET-M33 and colistin during 24 h of exposure was examined. Following 24 h of exposure to AA139, SET-M33 or colistin, the seven strains were tested for changes in susceptibility to the respective AMPs. AA139 and SET-M33 showed a concentration-dependent bactericidal effect irrespective of bacterial susceptibility to colistin. Exposure to low colistin concentrations resulted in the development of colistin resistance in colistin-susceptible strains, whereas susceptibility to AA139 and SET-M33 following exposure to the respective AMPs was maintained. The two novel AMPs remained effective against colistin-resistant strains and may be promising novel drugs for the treatment of clinically and genotypically diverse MDR K. pneumoniae infections, including infections associated with colistin-resistant bacteria.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Farmacorresistência Bacteriana , Variação Genética , Genótipo , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
18.
Microb Drug Resist ; 25(1): 32-38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30067166

RESUMO

Nosocomial infections occur worldwide and also in the Kurdistan region. Frequently patients colonized with multiresistant Pseudomonas aeruginosa isolates are encountered in many hospitals. As information is lacking with respect to the mechanisms of resistance responsible for the multiresistant character of the P. aeruginosa isolates and their genetic relationship, isolates were prospectively collected and characterized with respect to their mechanism of resistance. During 2012 and 2013, 81 P. aeruginosa isolates were collected from three teaching hospitals in the city of Erbil, Iraq. Susceptibility testing was performed using the VITEK-2 system. Isolates were screened for the presence of extended-spectrum ß-lactamases (ESBLs) and for the presence of metallo ß-lactamases (MBLs). The presence of serine carbapenemases was detected by PCR. The genetic relationship of the isolates was demonstrated by amplified fragment length polymorphism (AFLP). Susceptibility results revealed high rates of resistance against all classes of antibiotics except polymyxins. Genetic characterization demonstrated the presence of ESBL-genes, that is, blaVEB (30%) and blaPER (17%), also ESBL blaPME was detected in four isolates. AFLP typing revealed clonal spread of blaVEB, blaPER, and three clusters of blaOXA-10-positive isolates. Only one isolate was MBL (blaVIM) positive. Of a selected number of isolates (n = 11), whole-genome sequencing analysis revealed that these isolates belonged to "high-risk" MLSTs ST244, ST235, ST308, and ST654. This study reveals the presence and clonal spread of widely resistant high-risk clones of P. aeruginosa in Iraqi Kurdistan. As far as we are aware, this is the first report of multiple, polyclonal, PME producing P. aeruginosa outside the Arabian Peninsula.


Assuntos
Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Genes Bacterianos/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , beta-Lactamases/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Infecção Hospitalar/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Iraque , Testes de Sensibilidade Microbiana/métodos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição/genética , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos
19.
Future Microbiol ; 13: 1683-1692, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30499686

RESUMO

Respiratory tract infections are one of the most frequent infections worldwide, with an increasing number being associated with (multiple) antibiotic-resistant pathogens. Improved treatment requires the development of new therapeutic strategies, including the possible development of antibiotic-nanomedicines. Antibiotic-nanomedicines comprise antibiotic molecules coupled to nanocarriers via surface adsorption, surface attachment, entrapment or conjugation and can be administered via aerosolization. The efficacy and tolerability of this approach has been shown in clinical studies, with amikacin liposome inhalation suspension being the first inhalatory antibiotic-nanomedicine approved by the US FDA. In this special report, we summarize and discuss the potential value and the clinical status of antibiotic-nanomedicines for the treatment of (antibiotic-resistant) respiratory tract infections.


Assuntos
Administração por Inalação , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Nanomedicina/métodos , Infecções Respiratórias/tratamento farmacológico , Amicacina/farmacologia , Aprovação de Drogas , Resistência Microbiana a Medicamentos , Humanos , Lipossomos , Tamanho da Partícula , Sistema Respiratório , Infecções Respiratórias/microbiologia , Resultado do Tratamento , Estados Unidos , United States Food and Drug Administration
20.
Front Microbiol ; 9: 2057, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233535

RESUMO

The emergence of carbapenem-resistant Pseudomonas aeruginosa represents a worldwide problem. To understand the carbapenem-resistance mechanisms and their spreading among P. aeruginosa strains, whole genome sequences were determined of two extensively drug-resistant strains that are endemic in Dutch hospitals. Strain Carb01 63 is of O-antigen serotype O12 and of sequence type ST111, whilst S04 90 is a serotype O11 strain of ST446. Both strains carry a gene for metallo-ß-lactamase VIM-2 flanked by two aacA29 genes encoding aminoglycoside acetyltransferases on a class 1 integron. The integron is located on the chromosome in strain Carb01 63 and on a plasmid in strain S04 90. The backbone of the 159-kb plasmid, designated pS04 90, is similar to a previously described plasmid, pND6-2, from Pseudomonas putida. Analysis of the context of the integron showed that it is present in both strains on a ∼30-kb mosaic DNA segment composed of four different transposons that can presumably act together as a novel, active, composite transposon. Apart from the presence of a 1237-bp insertion sequence element in the composite transposon on pS04 90, these transposons show > 99% sequence identity indicating that transposition between plasmid and chromosome could have occurred only very recently. The pS04 90 plasmid could be transferred by conjugation to a susceptible P. aeruginosa strain. A second class 1 integron containing a gene for a CARB-2 ß-lactamase flanked by an aacA4'-8 and an aadA2 gene, encoding an aminoglycoside acetyltransferase and adenylyltransferase, respectively, was present only in strain Carb01 63. This integron is located also on a composite transposon that is inserted in an integrative and conjugative element on the chromosome. Additionally, this strain contains a frameshift mutation in the oprD gene encoding a porin involved in the transport of carbapenems across the outer membrane. Together, the results demonstrate that integron-encoded carbapenem and carbapenicillin resistance can easily be disseminated by transposition and conjugation among Pseudomonas aeruginosa strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA