Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 133(9): 090802, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39270187

RESUMO

We entangle two cotrapped atomic barium ion qubits by collecting single visible photons from each ion through in vacuo 0.8 NA objectives, interfering them through an integrated fiber beam splitter and detecting them in coincidence. This projects the qubits into an entangled Bell state with an observed fidelity lower bound of F>94%. We also introduce an ytterbium ion for sympathetic cooling to remove the need for recooling interruptions and achieve a continuous entanglement rate of 250 s^{-1}.

2.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477652

RESUMO

Photonic interconnects between quantum systems will play a central role in both scalable quantum computing and quantum networking. Entanglement of remote qubits via photons has been demonstrated in many platforms; however, improving the rate of entanglement generation will be instrumental for integrating photonic links into modular quantum computers. We present an ion trap system that has the highest reported free-space photon collection efficiency for quantum networking. We use a pair of in-vacuum aspheric lenses, each with a numerical aperture of 0.8, to couple 10(1)% of the 493 nm photons emitted from a 138Ba+ ion into single-mode fibers. We also demonstrate that proximal effects of the lenses on the ion position and motion can be mitigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA