Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(48): e2309412120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983500

RESUMO

Bunyaviruses are enveloped negative or ambisense single-stranded RNA viruses with a genome divided into several segments. The canonical view depicts each viral particle packaging one copy of each genomic segment in one polarity named the viral strand. Several opposing observations revealed nonequal ratios of the segments, uneven number of segments per virion, and even packaging of viral complementary strands. Unfortunately, these observations result from studies often addressing other questions, on distinct viral species, and not using accurate quantitative methods. Hence, what RNA segments and strands are packaged as the genome of any bunyavirus remains largely ambiguous. We addressed this issue by first investigating the virion size distribution and RNA content in populations of the tomato spotted wilt virus (TSWV) using microscopy and tomography. These revealed heterogeneity in viral particle volume and amount of RNA content, with a surprising lack of correlation between the two. Then, the ratios of all genomic segments and strands were established using RNA sequencing and qRT-PCR. Within virions, both plus and minus strands (but no mRNA) are packaged for each of the three L, M, and S segments, in reproducible nonequimolar proportions determined by those in total cell extracts. These results show that virions differ in their genomic content but together build up a highly reproducible genetic composition of the viral population. This resembles the genome formula described for multipartite viruses, with which some species of the order Bunyavirales may share some aspects of the way of life, particularly emerging properties at a supravirion scale.


Assuntos
Orthobunyavirus , Tospovirus , Orthobunyavirus/genética , RNA Viral/genética , Tospovirus/genética , Genoma Viral/genética , Vírion/genética
2.
Viruses ; 12(9)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825227

RESUMO

Aphid-borne viruses are frequent yield-limiting pathogens in open field vegetable crops. In the absence of curative methods, virus control relies exclusively on measures limiting virus introduction and spread. The efficiency of control measures may greatly benefit from an accurate knowledge of epidemic drivers, in particular those linked with aphid vectors. Field experiments were conducted in southeastern France between 2010 and 2019 to investigate the relationship between the epidemics of cucurbit aphid-borne yellows virus (CABYV) and aphid vector abundance. Winged aphids visiting melon crops were sampled daily to assess the abundance of CABYV vectors (Aphis gossypii, Macrosiphum euphorbiae and Myzus persicae) and CABYV was monitored weekly by DAS-ELISA. Epidemic temporal progress curves were successfully described by logistic models. A systematic search for correlations was undertaken between virus variables including parameters µ (inflection point of the logistic curve) and γ (maximum incidence) and aphid variables computed by aggregating abundances on periods relative either to the planting date, or to the epidemic peak. The abundance of A. gossypii during the first two weeks after planting was found to be a good predictor of CABYV dynamics, suggesting that an early control of this aphid species could mitigate the onset and progress of CABYV epidemics in melon crops.


Assuntos
Afídeos/virologia , Cucurbitaceae/virologia , Insetos Vetores/virologia , Luteoviridae/fisiologia , Doenças das Plantas/virologia , Animais , Afídeos/fisiologia , Cucurbitaceae/parasitologia , Epidemias , Insetos Vetores/fisiologia , Luteoviridae/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/estatística & dados numéricos
3.
Virus Res ; 286: 198042, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32504705

RESUMO

Plant viral diseases represent a significant burden to plant health, and their highest impact in Mediterranean agriculture is on vegetables grown under intensive horticultural practices. In order to understand better virus evolution and emergence, the most prevalent viruses were mapped in the main cucurbitaceous (melon, squashes) and solanaceous (tomato, pepper) crops and in some wild hosts in the French Mediterranean area, and virus diversity, evolution and population structure were studied through molecular epidemiology approaches. Surveys were performed in summer 2016 and 2017, representing a total of 1530 crop samples and 280 weed samples. The plant samples were analysed using serological and molecular approaches, including high-throughput sequencing (HTS). The viral species and their frequency in crops were quite similar to those of surveys conducted ten years before in the same areas. Contrary to other Mediterranean countries, aphid-transmitted viruses remain the most prevalent in France whereas whitefly-transmitted ones have not yet emerged. However, HTS analysis of viral evolution revealed the appearance of undescribed viral variants, especially for watermelon mosaic virus (WMV) in cucurbits, or variants not present in France before, as for cucumber mosaic virus (CMV) in solanaceous crops. Deep sequencing also revealed complex virus populations within individual plants with frequent recombination or reassortment. The spatial genetic structure of cucurbit aphid-borne yellows virus (CABYV) was related to the landscape structure, whereas in the case of WMV, the recurrence of introduction events and probable human exchanges of plant material resulted in complex spatial pattern of genetic variation.


Assuntos
Cucurbita/virologia , Evolução Molecular , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Vírus/genética , Animais , Afídeos/virologia , Produtos Agrícolas/virologia , França , Insetos Vetores/virologia , Região do Mediterrâneo , Filogenia , Vírus Reordenados/genética , Recombinação Genética , Vírus/classificação
4.
Data Brief ; 29: 105132, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32016141

RESUMO

This article displays insect count data obtained in eleven field trials conducted between 2010 and 2019 in southeastern France. Winged insect abundances were monitored daily within melon crops during 8-11 weeks in May-July using a suction trap or a yellow pan trap. Aphids were identified under a stereomicroscope. In total, 29,709 winged aphids belonging to 216 taxa and 151,061 other flying insects were caught. Among possible uses, these data can populate larger multisite studies or larger time series investigating aphid community variations. They can also feed generic studies exploring temporal dependencies or species assemblages. They can stimulate new collaborations with entomologists keen on implementing molecular tools or taxonomic expertise on a large specimen collection.

5.
Virus Res ; 241: 19-28, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28576697

RESUMO

Ornamental plants constitute a largely unknown and potentially important source of pathogens affecting not only ornamental plants, but also major crop species. We have carried out studies using high-throughput sequencing of 21-24 nt RNAs from potentially virus-infected ornamental plants, followed by assembly of sequence scaffolds, to identify the virus and viroid genomes present in a panel of 67 plant samples representing 46 species belonging to the main sectors of the ornamental plant industry (cut flowers, pot plants, bulbs). A pilot study demonstrated that samples could be pooled (5 samples per pool), and the overall process simplified without loss of detection of important known pathogens. In a full-scale study, pools of 5 samples were organized in a 5×5 matrix to facilitate attribution of a sequence to a precise sample directly from analysis of the matrix. In the total of 67 samples analyzed in the two studies, partial sequences suggesting the presence of 25 previously unknown viruses and viroids were detected, including all types of virus and viroid genomes, and also showed four cases of known viruses infecting previously undescribed hosts. Furthermore, two types of potential mis-assembly were analyzed, and were shown to not affect the conclusions regarding the presence of the pathogens identified, but show that mis-assembly can affect the results when the objective is determining complete bona fide viral genome sequences. These results clearly confirm that ornamental plants constitute a potential source of unknown viruses and viroids that could have a major impact on agriculture, and that sequencing siRNAs of potentially virus- or viroid-infected ornamental plants is an effective means for screening for the presence of potentially important pathogens.


Assuntos
Genoma Viral/genética , Doenças das Plantas/virologia , Vírus de Plantas/genética , RNA Interferente Pequeno/genética , Viroides/genética , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plantas/virologia , Análise de Sequência de RNA
6.
Virus Res ; 241: 105-115, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28587865

RESUMO

Cultivar choice is at the heart of cropping systems and resistant cultivars should be at the heart of disease management strategies whenever available. They are the easiest, most efficient and environmentally friendly way of combating viral diseases at the farm level. Among the melon genetic resources, Vat is a unique gene conferring resistance to both the melon aphid Aphis gossypii and the viruses it carries. The 'virus side' of this pleiotropic phenotype is seldom regarded as an asset for virus control. Indeed, the effect of Vat on virus epidemics in the field is expected to vary according to the composition of aphid populations in the environment and long-term studies are needed to draw a correct trend. Therefore, the first objective of the study was to re-evaluate the potential of Vat to reduce viral diseases in melon crops. The second objective was to investigate the potential of Vat to exert a selection pressure on virus populations. We monitored the epidemics of Cucurbit aphid-borne yellows virus (CABYV), Cucumber mosaic virus (CMV), Watermelon mosaic virus (WMV) and Zucchini yellow mosaic virus (ZYMV) in two melon lines having a common genetic background, a resistant line (R) and a susceptible line (S), in eight field trials conducted in southeastern France between 2011 and 2015. Vat had limited impact if any on WMV epidemics probably because A. gossypii is not the main vector of WMV in the field, but a favorable impact on CMV, yet of variable intensity probably related to the importance of A. gossypii in the total aphid population. Vat had a significant impact on CABYV epidemics with mean incidence reduction exceeding 50% in some trials. There was no effect of Vat on the structure of virus populations, both for the non-persistent WMV transmitted by numerous aphid species and for the persistent CABYV transmitted predominantly by A. gossypii.


Assuntos
Afídeos/virologia , Cucumovirus/crescimento & desenvolvimento , Cucurbitaceae/virologia , Resistência à Doença/genética , Luteoviridae/crescimento & desenvolvimento , Doenças das Plantas/virologia , Potyvirus/crescimento & desenvolvimento , Animais , França , Insetos Vetores/virologia , Proteínas de Plantas/genética
7.
Mol Plant Microbe Interact ; 27(5): 491-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24400938

RESUMO

An isolate of Lettuce mosaic virus (LMV, a Potyvirus) infecting Madagascar periwinckle (Catharanthus roseus) was identified and characterized by Illumina deep sequencing. LMV-Cr has no close affinities to previously sequenced LMV isolates and represents a novel, divergent LMV clade. Inoculation experiments with other representative LMV isolates showed that they are unable to infect C. roseus, which was not known to be a host for LMV. However, three C. roseus variants of one of these isolates, LMV-AF199, could be selected and partially or completely sequenced. These variants are characterized by the accumulation of mutations affecting the C-terminal part of the cylindrical inclusion (CI) helicase and the central part of the VPg. In particular, a serine to proline mutation at amino acid 143 of the VPg was observed in all three independently selected variants and is also present in the LMV-Cr isolate, making it a prime candidate as a host-range determinant. Other mutations at VPg positions 65 and 144 could also contribute to the ability to infect C. roseus. Inoculation experiments involving a recombinant LMV expressing a permissive lettuce eukaryotic translation initiation factor 4E (eIF4E) suggest that eIF4E does not contribute to the interaction of most LMV isolates with C. roseus.


Assuntos
Catharanthus/virologia , Genoma Viral/genética , Lactuca/virologia , Doenças das Plantas/virologia , Potyvirus/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , DNA Helicases/genética , DNA Helicases/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Especificidade de Hospedeiro , Dados de Sequência Molecular , Mutação , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potyvirus/fisiologia , Análise de Sequência de DNA , Proteínas Virais/metabolismo
8.
Phytopathology ; 95(3): 227-32, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18943114

RESUMO

ABSTRACT Variability within the pepper-infecting potyviruses Pepper veinal mottle virus (PVMV) and Chili veinal mottle virus (ChiVMV) in Africa and Asia was investigated. Coat protein (CP) gene sequence diversity revealed three clades that corresponded to three geographic locations and there was no evidence of presence of the ChiVMV/Asian group in western or central Africa. These clades included closely related isolates that potentially belong to two viral species, which is consistent with current nomenclature. These clades could not be unambiguously identified with polyclonal antisera; however, reverse transcription-polymerase chain reactions allowed differentiation of the isolates into two species based on a large indel in the CP gene. PVMV and ChiVMV isolates were classified into three and two pathotypes, respectively, in relation to pepper genotypes carrying different resistance factors. Specificity of resistance only partially corresponded to molecular diversity of the isolates. Only one isolate of PVMV could infect pepper genotypes carrying the two recessive genes pvr6 and pvr2 (2); however, these genotypes were not infected by PVMV in field trials in Senegal, despite a high prevalence of PVMV in the surrounding pepper plants.

9.
Phytopathology ; 94(4): 345-50, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18944110

RESUMO

ABSTRACT The dominant gene Am from Lycopersicon hirsutum f. sp. glabratum PI134417 confers resistance to most strains of Alfalfa mosaic virus, including the recently identified necrotic strains. The phenotypic response includes a lack of symptom development following mechanical inoculation of leaves. To study the resistance mechanism controlled by Am, biological (back-inoculation to susceptible hosts), serological (double-antibody sandwich, enzyme-linked immunosorbent assay), and molecular (reverse transcription-polymerase chain reaction and hybridization with specific riboprobes) methods of virus detection have been conducted on mechanically inoculated PI134417 leaves. The virus was never recovered, indicating that Am acts by an inhibition of viral accumulation during the early events of the virus life cycle. Am has been mapped genetically to the short arm of tomato chromosome 6 in the resistance hotspot, which includes the R-genes Mi and Cf-2/Cf-5 and the quantitative resistance factors Ty-1, Ol-1, and Bw-5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA