Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Adv ; 8(8): eabk3338, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35196085

RESUMO

The tumor-suppressor PTPN2 is diminished in a subset of triple-negative breast cancers (TNBCs). Paradoxically, PTPN2-deficiency in tumors or T cells in mice can facilitate T cell recruitment and/or activation to promote antitumor immunity. Here, we explored the therapeutic potential of targeting PTPN2 in tumor cells and T cells. PTPN2-deficiency in TNBC associated with T cell infiltrates and PD-L1 expression, whereas low PTPN2 associated with improved survival. PTPN2 deletion in murine mammary epithelial cells TNBC models, did not promote tumorigenicity but increased STAT-1-dependent T cell recruitment and PD-L1 expression to repress tumor growth and enhance the efficacy of anti-PD-1. Furthermore, the combined deletion of PTPN2 in tumors and T cells facilitated T cell recruitment and activation and further repressed tumor growth or ablated tumors already predominated by exhausted T cells. Thus, PTPN2-targeting in tumors and/or T cells facilitates T cell recruitment and/or alleviates inhibitory constraints on T cells to combat TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
2.
Cancer Discov ; 12(3): 752-773, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794959

RESUMO

Immunotherapies aimed at alleviating the inhibitory constraints on T cells have revolutionized cancer management. To date, these have focused on the blockade of cell-surface checkpoints such as PD-1. Herein we identify protein tyrosine phosphatase 1B (PTP1B) as an intracellular checkpoint that is upregulated in T cells in tumors. We show that increased PTP1B limits T-cell expansion and cytotoxicity to contribute to tumor growth. T cell-specific PTP1B deletion increased STAT5 signaling, and this enhanced the antigen-induced expansion and cytotoxicity of CD8+ T cells to suppress tumor growth. The pharmacologic inhibition of PTP1B recapitulated the T cell-mediated repression of tumor growth and enhanced the response to PD-1 blockade. Furthermore, the deletion or inhibition of PTP1B enhanced the efficacy of adoptively transferred chimeric antigen receptor (CAR) T cells against solid tumors. Our findings identify PTP1B as an intracellular checkpoint whose inhibition can alleviate the inhibitory constraints on T cells and CAR T cells to combat cancer. SIGNIFICANCE: Tumors subvert antitumor immunity by engaging checkpoints that promote T-cell exhaustion. Here we identify PTP1B as an intracellular checkpoint and therapeutic target. We show that PTP1B is upregulated in intratumoral T cells and that its deletion or inhibition enhances T-cell antitumor activity and increases CAR T-cell effectiveness against solid tumors. This article is highlighted in the In This Issue feature, p. 587.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Animais , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva , Camundongos , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884538

RESUMO

Tissue homeostasis via the elimination of aberrant cells is fundamental for organism survival. Cell competition is a key homeostatic mechanism, contributing to the recognition and elimination of aberrant cells, preventing their malignant progression and the development of tumors. Here, using Drosophila as a model organism, we have defined a role for protein tyrosine phosphatase 61F (PTP61F) (orthologue of mammalian PTP1B and TCPTP) in the initiation and progression of epithelial cancers. We demonstrate that a Ptp61F null mutation confers cells with a competitive advantage relative to neighbouring wild-type cells, while elevating PTP61F levels has the opposite effect. Furthermore, we show that knockdown of Ptp61F affects the survival of clones with impaired cell polarity, and that this occurs through regulation of the JAK-STAT signalling pathway. Importantly, PTP61F plays a robust non-cell-autonomous role in influencing the elimination of adjacent polarity-impaired mutant cells. Moreover, in a neoplastic RAS-driven polarity-impaired tumor model, we show that PTP61F levels determine the aggressiveness of tumors, with Ptp61F knockdown or overexpression, respectively, increasing or reducing tumor size. These effects correlate with the regulation of the RAS-MAPK and JAK-STAT signalling by PTP61F. Thus, PTP61F acts as a tumor suppressor that can function in an autonomous and non-cell-autonomous manner to ensure cellular fitness and attenuate tumorigenesis.


Assuntos
Carcinogênese/metabolismo , Competição entre as Células , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neoplasias/prevenção & controle , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Tirosina Fosfatases não Receptoras/genética , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismo
4.
Diabetes ; 68(6): 1251-1266, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936146

RESUMO

Genome-wide association studies have identified PTPN2 as an important non-MHC gene for autoimmunity. Single nucleotide polymorphisms that reduce PTPN2 expression have been linked with the development of various autoimmune disorders, including type 1 diabetes. The tyrosine phosphatase PTPN2 attenuates T-cell receptor and cytokine signaling in T cells to maintain peripheral tolerance, but the extent to which PTPN2 deficiency in T cells might influence type 1 diabetes onset remains unclear. NOD mice develop spontaneous autoimmune type 1 diabetes similar to that seen in humans. In this study, T-cell PTPN2 deficiency in NOD mice markedly accelerated the onset and increased the incidence of type 1 diabetes as well as that of other disorders, including colitis and Sjögren syndrome. Although PTPN2 deficiency in CD8+ T cells alone was able to drive the destruction of pancreatic ß-cells and the onset of diabetes, T-cell-specific PTPN2 deficiency was also accompanied by increased CD4+ T-helper type 1 differentiation and T-follicular-helper cell polarization and increased the abundance of B cells in pancreatic islets as seen in human type 1 diabetes. These findings causally link PTPN2 deficiency in T cells with the development of type 1 diabetes and associated autoimmune comorbidities.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Diabetes Mellitus Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Linfócitos T/metabolismo , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Colite/genética , Colite/imunologia , Diabetes Mellitus Tipo 1/imunologia , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos NOD , Proteína Tirosina Fosfatase não Receptora Tipo 2/imunologia , Síndrome de Sjogren/genética , Síndrome de Sjogren/imunologia , Linfócitos T/imunologia , Células Th1/imunologia , Células Th1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA