Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 20713, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456811

RESUMO

The extracellular matrix (ECM) is amongst many tissue components affected by cancer, however, morphological changes of the ECM are not well-understood and thus, often omitted from diagnostic considerations. Polarimetric second-harmonic generation (P-SHG) microscopy allows for visualization and characterization of collagen ultrastructure in the ECM, aiding in better understanding of the changes induced by cancer throughout the tissue. In this paper, a large region of hematoxylin and eosin (H&E) stained human lung section, encompassing a tumor margin, connecting a significant tumor portion to normal tissue was imaged with P-SHG microscopy. The resulting polarimetric parameters were utilized in principal components analysis and unsupervised K-Means clustering to separate normal- and tumor-like tissue. Consequently, a pseudo-color map of the clustered tissue regions is generated to highlight the irregularity of the ECM collagen structure throughout the region of interest and to identify the tumor margin, in the absence of morphological characteristics of the cells.


Assuntos
Neoplasias Pulmonares , Microscopia de Geração do Segundo Harmônico , Humanos , Margens de Excisão , Análise Espectral , Matriz Extracelular
2.
Sci Rep ; 12(1): 10290, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717344

RESUMO

The extracellular matrix (ECM) collagen undergoes major remodeling during tumorigenesis. However, alterations to the ECM are not widely considered in cancer diagnostics, due to mostly uniform appearance of collagen fibers in white light images of hematoxylin and eosin-stained (H&E) tissue sections. Polarimetric second-harmonic generation (P-SHG) microscopy enables label-free visualization and ultrastructural investigation of non-centrosymmetric molecules, which, when combined with texture analysis, provides multiparameter characterization of tissue collagen. This paper demonstrates whole slide imaging of breast tissue microarrays using high-throughput widefield P-SHG microscopy. The resulting P-SHG parameters are used in classification to differentiate tumor from normal tissue, resulting in 94.2% for both accuracy and F1-score, and 6.3% false discovery rate. Subsequently, the trained classifier is employed to predict tumor tissue with 91.3% accuracy, 90.7% F1-score, and 13.8% false omission rate. As such, we show that widefield P-SHG microscopy reveals collagen ultrastructure over large tissue regions and can be utilized as a sensitive biomarker for cancer diagnostics and prognostics studies.


Assuntos
Neoplasias , Microscopia de Geração do Segundo Harmônico , Colágeno/química , Matriz Extracelular/patologia , Aprendizado de Máquina , Neoplasias/diagnóstico , Neoplasias/patologia , Prognóstico , Microscopia de Geração do Segundo Harmônico/métodos
3.
Biomed Opt Express ; 11(4): 1851-1863, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32341852

RESUMO

Polarimetric second-harmonic generation (P-SHG) microscopy is used to quantify the structural alteration of collagen in stage-I,-II and -III non-small cell lung carcinoma (NSCLC) ex vivo tissue. The achiral and chiral molecular second-order susceptibility tensor components ratios (R and C, respectively), the degree of linear polarization (DLP) and the in-plane collagen fiber orientation (δ) were extracted. Further, texture analysis was performed on the SHG intensity, R, C, DLP and δ. The distributions of R, C, DLP and δ as well as the textural features of entropy, correlation and contrast show significant differences between normal and tumor tissues.

4.
J Biophotonics ; 13(4): e201960167, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31975533

RESUMO

Polarization-resolved second-harmonic generation (P-SHG) microscopy is a technique capable of characterizing nonlinear optical properties of noncentrosymmetric biomaterials by extracting the nonlinear susceptibility tensor components ratio χzzz2'/χzxx2' , with z-axis parallel and x-axis perpendicular to the C6 symmetry axis of molecular fiber, such as a myofibril or a collagen fiber. In this paper, we present two P-SHG techniques based on incoming and outgoing circular polarization states for a fast extraction of χzzz2'/χzxx2' : A dual-shot configuration where the SHG circular anisotropy generated using incident right- and left-handed circularly-polarized light is measured; and a single-shot configuration for which the SHG circular anisotropy is measured using only one incident circular polarization state. These techniques are used to extract the χzzz2'/χzxx2' of myosin fibrils in the body wall muscles of Drosophila melanogaster larva. The results are in good agreement with values obtained from the double Stokes-Mueller polarimetry. The dual- and single-shot circular anisotropy measurements can be used for fast imaging that is independent of the in-plane orientation of the sample. They can be used for imaging of contracting muscles, or for high throughput imaging of large sample areas.


Assuntos
Drosophila melanogaster , Miosinas , Microscopia de Geração do Segundo Harmônico , Animais , Microscopia de Polarização , Músculos
5.
Biomed Opt Express ; 10(10): 5025-5030, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31646027

RESUMO

Polarimetric second-harmonic generation (P-SHG) microscopy is used to characterize the composition and polarity of collagen fibers in various regions of human cardiac tissue. The boundary between the cardiac conduction system and myocardium is shown to possess a distinct composition of collagen compared to other regions in the heart. Moreover, collagen fibers in this region are macroscopically organized in a unipolar arrangement, which may consequently aid in effective propagation of the electrical signal through the cardiac conduction system.

6.
Sci Rep ; 9(1): 12488, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462663

RESUMO

Nonlinear optical properties of collagen type-I are investigated in thin tissue sections of pig tendon as a research model using a complete polarimetric second-harmonic generation (P-SHG) microscopy technique called double Stokes-Mueller polarimetry (DSMP). Three complex-valued molecular susceptibility tensor component ratios are extracted. A significant retardance is observed between the chiral susceptibility component and the achiral components, while the achiral components appear to be in phase with each other. The DSMP formalism and microscopy measurements are further used to explain and experimentally validate the conditions required for SHG circular dichroism (SHG-CD) of collagen to occur. The SHG-CD can be observed with the microscope when: (i) the chiral second-order susceptibility tensor component has a non-zero value, (ii) a phase retardance is present between the chiral and achiral components of the second-order susceptibility tensor and (iii) the collagen fibres are tilted out of the image plane. Both positive and negative areas of SHG-CD are observed in microscopy images, which relates to the anti-parallel arrangement of collagen fibres in different fascicles of the tendon. The theoretical formalism and experimental validation of DSMP imaging technique opens new opportunities for ultrastructural characterisation of chiral molecules, in particular collagen, and provides basis for the interpretation of SHG-CD signals. The nonlinear imaging of chiroptical parameters offers new possibilities to further improve the diagnostic sensitivity and/or specificity of nonlinear label-free histopathology.


Assuntos
Dicroísmo Circular , Colágeno/química , Microscopia , Modelos Teóricos , Tendões/química , Animais , Suínos
7.
Front Oncol ; 9: 272, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058080

RESUMO

Thin tissue sections of normal and tumorous pancreatic tissues stained with hematoxylin and eosin were investigated using multiphoton excitation fluorescence (MPF), second harmonic generation (SHG), and third harmonic generation (THG) microscopies. The cytoplasm, connective tissue, collagen and extracellular structures are visualized with MPF due to the eosin stain, whereas collagen is imaged with endogenous SHG contrast that does not require staining. Cellular structures, including membranous interfaces and nuclear components, are seen with THG due to the aggregation of hematoxylin dye. Changes in the collagen ultrastructure in pancreatic cancer were investigated by a polarization-sensitive SHG microscopy technique, polarization-in, polarization-out (PIPO) SHG. This involves measuring the orientation of the linear polarization of the SHG signal as a function of the linear polarization orientation of the incident laser radiation. From the PIPO SHG data, the second-order non-linear optical susceptibility ratio, χ(2) zzz '/χ(2) zxx ', was obtained that serves as a structural parameter for characterizing the tissue. Furthermore, by assuming C6 symmetry, an additional second-order non-linear optical susceptibility ratio, χ(2) xyz '/χ(2) zxx ', was obtained, which is a measure of the chirality of the collagen fibers. Statistically-significant differences in the χ(2) zzz '/χ(2) zxx ' values were found between tumor and normal pancreatic tissues in periductal, lobular, and parenchymal regions, whereas statistically-significant differences in the full width at half maximum (FWHM) of χ(2) xyz '/χ(2) zxx ' occurrence histograms were found between tumor and normal pancreatic tissues in periductal and parenchymal regions. Additionally, the PIPO SHG data were used to determine the degree of linear polarization (DOLP) of the SHG signal, which indicates the relative linear depolarization of the signal. Statistically-significant differences in DOLP values were found between tumor and normal pancreatic tissues in periductal and parenchymal regions. Hence, the differences observed in the χ(2) zzz '/χ(2) zxx ' values, the FWHM of χ(2) xyz '/χ(2) zxx ' values and the DOLP values could potentially be used to aid pathologists in diagnosing pancreatic cancer.

8.
J Biophotonics ; 12(1): e201800241, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30288949

RESUMO

Polarization-dependent second-harmonic generation (P-SHG) microscopy is used to characterize molecular nonlinear optical properties of collagen and determine a three-dimensional (3D) orientation map of collagen fibers within a pig tendon. C6 symmetry is used to determine the nonlinear susceptibility tensor components ratios in the molecular frame of reference χzzz2/χzxx2 and χxyz2/χzxx2 , where the latter is a newly extracted parameter from the P-SHG images and is related to the chiral structure of collagen. The χxyz2/χzxx2 is observed for collagen fibers tilted out of the image plane, and can have positive or negative values, revealing the relative polarity of collagen fibers within the tissue. The P-SHG imaging was performed using a linear polarization-in polarization-out (PIPO) method on thin sections of pig tendon cut at different angles. The nonlinear chiral properties of collagen can be used to construct the 3D organization of collagen in the tissue and determine the orientation-independent molecular susceptibility ratios of collagen fibers in the molecular frame of reference.


Assuntos
Colágeno/química , Microscopia de Geração do Segundo Harmônico/métodos , Tendão do Calcâneo , Animais , Estereoisomerismo , Suínos
9.
J Struct Biol ; 199(2): 153-164, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28655593

RESUMO

Metastatic involvement diminishes the mechanical integrity of vertebral bone, however its specific impact on the structural characteristics of a primary constituent of bone tissue, the collagen-I fibril matrix, has not been adequately characterized. Female athymic rats were inoculated with HeLa or Ace-1 cancer cells lines producing osteolytic or mixed (osteolytic & osteoblastic) metastases respectively. A maximum of 21days was allowed between inoculation and rat sacrifice for vertebrae extraction. Linear polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and transmission electron microscopy (TEM) imaging was utilized to assess the impact of metastatic involvement on collagen fibril organization. Increased observations of deviations in the typical plywood motif or a parallel packing structure and an increased average measured susceptibility ratio (related to relative degree of in-plane vs. out-plane fibrils in the analyzed tissue area) in bone adjacent to metastatic involvement was indicative of change in fibrilar organization compared to healthy controls. In particular, collagen-I fibrils in tumour-induced osteoblastic bone growth showed no adherence to the plywood motif or parallel packing structure seen in healthy lamellar bone, exhibiting a much higher susceptibility ratio and degree of fibril disorder. Negative correlations were established between measured susceptibility ratios and the hardness and modulus of metastatic bone tissue assessed in a previous study. Characterizing modifications in tissue level properties is key in defining bone quality in the presence of metastatic disease and their potential impact on material behaviour.


Assuntos
Osso e Ossos/química , Colágeno Tipo I/ultraestrutura , Metástase Neoplásica/fisiopatologia , Animais , Desenvolvimento Ósseo , Osso e Ossos/patologia , Osso e Ossos/ultraestrutura , Linhagem Celular Tumoral , Feminino , Células HeLa , Xenoenxertos , Humanos , Osteoblastos/patologia , Osteólise/patologia , Ratos , Coluna Vertebral/química , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/patologia
10.
Biomed Opt Express ; 7(10): 4054-4068, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27867715

RESUMO

Second-harmonic generation (SHG) double Stokes-Mueller polarimetric microscopy is applied to study the alteration of collagen ultrastructure in a tissue microarray containing three pathological human breast cancer types with differently overexpressed estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2 (HER2). Kleinman symmetry is experimentally validated in breast tissue for 1028 nm laser wavelength and it has been shown that measurements with only linearly polarized incoming and outgoing states can determine molecular nonlinear susceptibility tensor component ratio, average in-plane orientation of collagen fibers and degree of linear polarization of SHG. Increase in the susceptibility ratio for ER, PgR, HER2 positive cases, reveals ultrastructural changes in the collagen fibers while the susceptibility ratio increase and decrease in degree of linear polarization for ER and PgR positive cases indicate alteration of the ultrastructure and increased disorder of the collagen fibers within each focal volume. The study demonstrates a potential use of polarimetric SHG microscopy for collagen characterization and cancer diagnostics.

11.
Biomed Opt Express ; 6(9): 3475-81, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26417516

RESUMO

Changes in collagen ultrastructure between malignant and normal human thyroid tissue were investigated ex vivo using polarization second harmonic generation (SHG) microscopy. The second-order nonlinear optical susceptibility tensor component ratio and the degree of linear polarization (DOLP) of the SHG signal were measured. The ratio values are related to the collagen ultrastructure, while DOLP indicates the relative amount of coherent signal and incoherent scattering of SHG. Increase in ratio values and decrease in DOLP were observed for tumor tissue compared to normal thyroid, indicating higher ultrastructural disorder in tumor collagen.

12.
Biomed Opt Express ; 5(10): 3562-7, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25360372

RESUMO

Polarization second harmonic microscopy was used for collagen imaging in human non-small cell lung carcinoma and normal lung tissues ex vivo and revealed significant differences in the nonlinear susceptibility component ratio, demonstrating potential use in cancer diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA