Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Inherit Metab Dis ; 43(6): 1186-1198, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32743799

RESUMO

Glycine abundance is modulated in a tissue-specific manner by use in biosynthetic reactions, catabolism by the glycine cleavage system (GCS), and excretion via glycine conjugation. Dysregulation of glycine metabolism is associated with multiple disorders including epilepsy, developmental delay, and birth defects. Mutation of the GCS component glycine decarboxylase (GLDC) in non-ketotic hyperglycinemia (NKH) causes accumulation of glycine in body fluids, but there is a gap in our knowledge regarding the effects on glycine metabolism in tissues. Here, we analysed mice carrying mutations in Gldc that result in severe or mild elevations of plasma glycine and model NKH. Liver of Gldc-deficient mice accumulated glycine and numerous glycine derivatives, including multiple acylglycines, indicating increased flux through reactions mediated by enzymes including glycine-N-acyltransferase and arginine: glycine amidinotransferase. Levels of dysregulated metabolites increased with age and were normalised by liver-specific rescue of Gldc expression. Brain tissue exhibited increased abundance of glycine, as well as derivatives including guanidinoacetate, which may itself be epileptogenic. Elevation of brain tissue glycine occurred even in the presence of only mildly elevated plasma glycine in mice carrying a missense allele of Gldc. Treatment with benzoate enhanced hepatic glycine conjugation thereby lowering plasma and tissue glycine. Moreover, administration of a glycine conjugation pathway intermediate, cinnamate, similarly achieved normalisation of liver glycine derivatives and circulating glycine. Although exogenous benzoate and cinnamate impact glycine levels via activity of glycine-N-acyltransferase, that is not expressed in brain, they are sufficient to lower levels of glycine and derivatives in brain tissue of treated Gldc-deficient mice.


Assuntos
Encéfalo/metabolismo , Glicina Desidrogenase (Descarboxilante)/genética , Glicina/metabolismo , Hiperglicinemia não Cetótica/enzimologia , Alelos , Animais , Encéfalo/patologia , Hiperglicinemia não Cetótica/patologia , Camundongos , Mutação de Sentido Incorreto
2.
PLoS One ; 13(11): e0207251, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30408103

RESUMO

The CXCL12-CXCR4 pathway has crucial roles in stem cell homing and maintenance, neuronal guidance, cancer progression, inflammation, remote-conditioning, cell migration and development. Recently, work in chick suggested that signalling via CXCR4 in neural crest cells (NCCs) has a role in the 22q11.2 deletion syndrome (22q11.2DS), a disorder where haploinsufficiency of the transcription factor TBX1 is responsible for the major structural defects. We tested this idea in mouse models. Our analysis of genes with altered expression in Tbx1 mutant mouse models showed down-regulation of Cxcl12 in pharyngeal surface ectoderm and rostral mesoderm, both tissues with the potential to signal to migrating NCCs. Conditional mutagenesis of Tbx1 in the pharyngeal surface ectoderm is associated with hypo/aplasia of the 4th pharyngeal arch artery (PAA) and interruption of the aortic arch type B (IAA-B), the cardiovascular defect most typical of 22q11.2DS. We therefore analysed constitutive mouse mutants of the ligand (CXCL12) and receptor (CXCR4) components of the pathway, in addition to ectodermal conditionals of Cxcl12 and NCC conditionals of Cxcr4. However, none of these typical 22q11.2DS features were detected in constitutively or conditionally mutant embryos. Instead, duplicated carotid arteries were observed, a phenotype recapitulated in Tie-2Cre (endothelial) conditional knock outs of Cxcr4. Previous studies have demonstrated genetic interaction between signalling pathways and Tbx1 haploinsufficiency e.g. FGF, WNT, SMAD-dependent. We therefore tested for possible epistasis between Tbx1 and the CXCL12 signalling axis by examining Tbx1 and Cxcl12 double heterozygotes as well as Tbx1/Cxcl12/Cxcr4 triple heterozygotes, but failed to identify any exacerbation of the Tbx1 haploinsufficient arch artery phenotype. We conclude that CXCL12 signalling via NCC/CXCR4 has no major role in the genesis of the Tbx1 loss of function phenotype. Instead, the pathway has a distinct effect on remodelling of head vessels and interventricular septation mediated via CXCL12 signalling from the pharyngeal surface ectoderm and second heart field to endothelial cells.


Assuntos
Sistema Cardiovascular/crescimento & desenvolvimento , Sistema Cardiovascular/metabolismo , Quimiocina CXCL12/deficiência , Receptores CXCR4/deficiência , Proteínas com Domínio T/deficiência , Animais , Aorta Torácica/anormalidades , Aorta Torácica/embriologia , Aorta Torácica/metabolismo , Anormalidades Cardiovasculares/embriologia , Anormalidades Cardiovasculares/genética , Anormalidades Cardiovasculares/metabolismo , Sistema Cardiovascular/embriologia , Quimiocina CXCL12/genética , Síndrome de DiGeorge/enzimologia , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/metabolismo , Modelos Animais de Doenças , Epistasia Genética , Feminino , Haploinsuficiência , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Crista Neural/metabolismo , Gravidez , Receptores CXCR4/genética , Transdução de Sinais/genética , Proteínas com Domínio T/genética
3.
J Anat ; 228(3): 452-63, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26612825

RESUMO

TOP2A and TOP2B are type II topoisomerase enzymes that have important but distinct roles in DNA replication and RNA transcription. Recently, TOP2B has been implicated in the transcription of long genes in particular that play crucial roles in neural development and are susceptible to mutations contributing to neurodevelopmental conditions such as autism and schizophrenia. This study maps their expression in the early foetal human telencephalon between 9 and 12 post-conceptional weeks. TOP2A immunoreactivity was restricted to cell nuclei of the proliferative layers of the cortex and ganglionic eminences (GE), including the ventricular zone and subventricular zone (SVZ) closely matching expression of the proliferation marker KI67. Comparison with sections immunolabelled for NKX2.1, a medial GE (MGE) marker, and PAX6, a cortical progenitor cell and lateral GE (LGE) marker, revealed that TOP2A-expressing cells were more abundant in MGE than the LGE. In the cortex, TOP2B is expressed in cell nuclei in both proliferative (SVZ) and post-mitotic compartments (intermediate zone and cortical plate) as revealed by comparison with immunostaining for PAX6 and the post-mitotic neuron marker TBR1. However, co-expression with KI67 was rare. In the GE, TOP2B was also expressed by proliferative and post-mitotic compartments. In situ hybridisation studies confirmed these patterns of expression, except that TOP2A mRNA is restricted to cells in the G2/M phase of division. Thus, during early development, TOP2A is likely to have a role in cell proliferation, whereas TOP2B is expressed in post-mitotic cells and may be important in controlling expression of long genes even at this early stage.


Assuntos
Antígenos de Neoplasias/biossíntese , DNA Topoisomerases Tipo II/biossíntese , Proteínas de Ligação a DNA/biossíntese , Feto/enzimologia , Neurogênese/fisiologia , Telencéfalo/embriologia , Telencéfalo/enzimologia , Humanos , Imuno-Histoquímica , Hibridização In Situ , Proteínas de Ligação a Poli-ADP-Ribose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA