Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Neurochem Res ; 49(8): 2179-2196, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834845

RESUMO

There is some evidence that the serotonin receptor subtype 7 (5-HT7) could be new therapeutic target for neuroprotection. The aim of this study was to compare the neuroprotective and neurite outgrowth potential of new 5-HT7 receptor agonists (AH-494, AGH-238, AGH-194) with 5-CT (5-carboxyamidotryptamine) in human neuroblastoma SH-SY5Y cells. The results revealed that 5-HT7 mRNA expression was significantly higher in retinoic acid (RA)-differentiated cells when compared to undifferentiated ones and it was higher in cell cultured in neuroblastoma experimental medium (DMEM) compared to those placed in neuronal (NB) medium. Furthermore, the safety profile of compounds was favorable for all tested compounds at concentration used for neuroprotection evaluation (up to 1 µM), whereas at higher concentrations (above 10 µM) the one of the tested compounds, AGH-194 appeared to be cytotoxic. While we observed relatively modest protective effects of 5-CT and AH-494 in UN-SH-SY5Y cells cultured in DMEM, in UN-SH-SY5Y cells cultured in NB medium we found a significant reduction of H2O2-evoked cell damage by all tested 5-HT7 agonists. However, 5-HT7-mediated neuroprotection was not associated with inhibition of caspase-3 activity and was not observed in RA-SH-SY5Y cells exposed to H2O2. Furthermore, none of the tested 5-HT7 agonists altered the damage induced by 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenylpyridinium ion (MPP +) and doxorubicin (Dox) in UN- and RA-SH-SY5Y cells cultured in NB. Finally we showed a stimulating effect of AH-494 and AGH-194 on neurite outgrowth. The obtained results provide insight into neuroprotective and neurite outgrowth potential of new 5-HT7 agonists.


Assuntos
Neuroblastoma , Crescimento Neuronal , Fármacos Neuroprotetores , Receptores de Serotonina , Agonistas do Receptor de Serotonina , Humanos , Receptores de Serotonina/metabolismo , Fármacos Neuroprotetores/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Linhagem Celular Tumoral , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sobrevivência Celular/efeitos dos fármacos , Serotonina/análogos & derivados
2.
J Neurochem ; 166(3): 623-632, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37358014

RESUMO

Prediction of post-stroke depressive symptoms (DSs) is challenging in patients without a history of depression. Gene expression profiling in blood cells may facilitate the search for biomarkers. The use of an ex vivo stimulus to the blood helps to reveal differences in gene profiles by reducing variation in gene expression. We conducted a proof-of-concept study to determine the usefulness of gene expression profiling in lipopolysaccharide (LPS)-stimulated blood for predicting post-stroke DS. Out of 262 enrolled patients with ischemic stroke, we included 96 patients without a pre-stroke history of depression and not taking any anti-depressive medication before or during the first 3 months after stroke. We assessed DS at 3 months after stroke using the Patient Health Questionnaire-9. We used RNA sequencing to determine the gene expression profile in LPS-stimulated blood samples taken on day 3 after stroke. We constructed a risk prediction model using a principal component analysis combined with logistic regression. We diagnosed post-stroke DS in 17.7% of patients. Expression of 510 genes differed between patients with and without DS. A model containing 6 genes (PKM, PRRC2C, NUP188, CHMP3, H2AC8, NOP10) displayed very good discriminatory properties (area under the curve: 0.95) with the sensitivity of 0.94 and specificity of 0.85. Our results suggest the potential utility of gene expression profiling in whole blood stimulated with LPS for predicting post-stroke DS. This method could be useful for searching biomarkers of post-stroke depression.


Assuntos
Lipopolissacarídeos , Acidente Vascular Cerebral , Humanos , Lipopolissacarídeos/farmacologia , Depressão/genética , Acidente Vascular Cerebral/complicações , Perfilação da Expressão Gênica , Biomarcadores , Complexos Endossomais de Distribuição Requeridos para Transporte
3.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293185

RESUMO

The expression of the Calcium/Calmodulin-Dependent Protein Kinase I gamma (encoded by the Camk1g gene) depends on the activation of glucocorticoid receptors (GR) and is strongly regulated by stress. Since Camk1g is primarily expressed in neuronal cells of the limbic system in the brain, we hypothesized that it could be involved in signaling mechanisms that underlie the adaptive or maladaptive responses to stress. Here, we find that restraint-induced stress and the GR agonist dexamethasone robustly increase the expression of Camk1g in neurons of the amygdalar nuclei in the mouse brain. To assess the functional role of Camk1g expression, we performed a virally induced knock-down of the transcript. Mice with bilateral amygdala-specific Camk1g knock-down showed increased anxiety-like behaviors in the light-dark box, and an increase in freezing behavior after fear-conditioning, but normal spatial working memory during exploration of a Y-maze. Thus, we confirm that Camk1g is a neuron-specific GR-regulated transcript, and show that it is specifically involved in behaviors related to anxiety, as well as responses conditioned by aversive stimuli.


Assuntos
Núcleo Central da Amígdala , Glucocorticoides , Camundongos , Animais , Glucocorticoides/farmacologia , Núcleo Central da Amígdala/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Cálcio , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Ansiedade/metabolismo , Dexametasona/farmacologia , Comportamento Animal
4.
Cells ; 11(16)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36010662

RESUMO

Despite the general awareness of the need to reduce air pollution, the efforts were undertaken in Poland to eliminate the pollutants and their harmful effect on human health seem to be insufficient. Moreover, the latest data indicate that the city of Krakow is at the forefront of the most polluted cities worldwide. Hence, in this report, we investigated the impact of particulate matter isolated from the air of Krakow (PM KRK) on the gene expression profile of peripheral blood mononuclear cells (PBMCs) in healthy donors (HD) and patients with atherosclerosis (AS), rheumatoid arthritis (RA) and multiple sclerosis (MS), after in vitro exposure. Blood samples were collected in two seasons, differing in the concentration of PM in the air (below or above a daily limit of 50 µg/m3 for PM 10). Data show that PBMCs exposed in vitro to PM KRK upregulated the expression of genes involved, among others, in pro-inflammatory response, cell motility, and regulation of cell metabolism. The transcriptional effects were observed predominantly in the group of patients with AS and MS. The observed changes seem to be dependent on the seasonal concentration of PM in the air of Krakow and may suggest their important role in the progression of AS, MS, and RA in the residents of Krakow.


Assuntos
Poluentes Atmosféricos , Doenças Autoimunes , Humanos , Leucócitos Mononucleares , Tamanho da Partícula , Smog
5.
Transl Psychiatry ; 11(1): 246, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903586

RESUMO

Altered cytokine synthesis thought to contribute to the pathophysiology of post-stroke depression (PSD). Toll-like receptor 4 (TLR4) is a master regulator of innate immunity. The aim of this study was to explore the putative association between TLR4-mediated cytokine synthesis and subsequent symptoms of PSD. In total, 262 patients with ischemic stroke and without a history of PSD were included. Depressive symptoms were assessed using the Patient Health Questionnaire-9 in 170 patients on Day 8 and in 146 at 3 months after stroke. Blood samples taken on Day 3 after stroke were stimulated ex vivo with lipopolysaccharide (LPS). Ex vivo synthesized cytokines (TNFα, IP-10, IL-1ß, IL-6, IL-8, IL-10, and IL-12p70) and circulating cytokines (TNFα, IL-6, sIL-6R, and IL-1ra) were measured using the enzyme-linked immunoassay or cytometric method. RNA sequencing was used to determine the gene expression profile of LPS-induced cytokines and chemokines. LPS-induced cytokine synthesis and the gene expression of TLR4-dependent cytokines and chemokines did not differ between patients with and without greater depressive symptoms. The plasma level of IL-6, but not TNFα, sIL-6R, and IL-1ra, was higher in patients who developed depressive symptoms at 3 months after stroke (median: 4.7 vs 3.4 pg/mL, P = 0.06). Plasma IL-6 predicted the severity of depressive symptoms at 3 months after stroke (ß = 0.42, P = 0.03). In conclusion, TLR4-dependent cytokine synthesis was not associated with greater post-stroke depressive symptoms in this study. Circulating IL-6 might be associated with depressive symptoms occurring at 3 months after stroke.


Assuntos
Acidente Vascular Cerebral , Receptor 4 Toll-Like , Citocinas , Depressão/etiologia , Expressão Gênica , Humanos , Lipopolissacarídeos , Acidente Vascular Cerebral/complicações
6.
Neuropharmacology ; 180: 108307, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32941853

RESUMO

Opioid signaling controls the activity of the brain's reward system. It is involved in signaling the hedonic effects of rewards and has essential roles in reinforcement and motivational processes. Here, we focused on opioid signaling through mu and delta receptors on dopaminoceptive neurons and evaluated the role these receptors play in reward-driven behaviors. We generated a genetically modified mouse with selective double knockdown of mu and delta opioid receptors in neurons expressing dopamine receptor D1. Selective expression of the transgene was confirmed using immunostaining. Knockdown was validated by measuring the effects of selective opioid receptor agonists on neuronal membrane currents using whole-cell patch clamp recordings. We found that in the nucleus accumbens of control mice, the majority of dopamine receptor D1-expressing neurons were sensitive to a mu or delta opioid agonist. In mutant mice, the response to the delta receptor agonist was blocked, while the effects of the mu agonist were strongly attenuated. Behaviorally, the mice had no obvious impairments. The mutation did not affect the sensitivity to the rewarding effects of morphine injections or social contact and had no effect on preference for sweet taste. Knockdown had a moderate effect on motor activity in some of the tests performed, but this effect did not reach statistical significance. Thus, we found that knocking down mu and delta receptors on dopamine receptor D1-expressing cells does not appreciably affect some of the reward-driven behaviors previously attributed to opioid signaling.


Assuntos
Neurônios/metabolismo , Receptores de Dopamina D1/biossíntese , Receptores Opioides delta/deficiência , Receptores Opioides mu/deficiência , Recompensa , Analgésicos Opioides/farmacologia , Animais , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Morfina/farmacologia , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Receptores de Dopamina D1/genética , Receptores Opioides delta/agonistas , Receptores Opioides delta/genética , Receptores Opioides mu/agonistas , Receptores Opioides mu/genética
7.
J Mol Med (Berl) ; 98(6): 887-896, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32424559

RESUMO

Multiple classes of small RNAs (sRNAs) are expressed in the blood and are involved in the regulation of pivotal cellular processes. We aimed to elucidate the expression patterns and functional roles of sRNAs in the systemic response to intracranial aneurysm (IA) rupture. We used next-generation sequencing to analyze the expression of sRNAs in patients in the acute phase of IA rupture (first 72 h), in the chronic phase (3-15 months), and controls. The patterns of alterations in sRNA expression were analyzed in the context of clinically relevant information regarding the biological consequences of IA rupture. We identified 542 differentially expressed sRNAs (108 piRNAs, 99 rRNAs, 90 miRNAs, 43 scRNAs, 36 tRNAs, and 32 snoRNAs) among the studied groups with notable differences in upregulated and downregulated sRNAs between the groups and sRNAs categories. piRNAs and rRNAs showed a substantial decrease in RNA abundance that was sustained after IA rupture, whereas miRNAs were largely upregulated. Downregulated sRNA genes included piR-31080, piR-57947, 5S rRNA, LSU-rRNA, and SSU-rRNA s. Remarkable enrichment in the representation of transcription factor binding sites was revealed in genomic locations of the regulated sRNA. We found strong overrepresentation of glucocorticoid receptor, retinoid x receptor alpha, and estrogen receptor alpha binding sites at the locations of downregulated piRNAs, tRNAs, and rRNAs. This report, although preliminary and largely proof-of-concept, is the first to describe alterations in sRNAs abundance levels in response to IA rupture in humans. The obtained results indicate novel mechanisms that may constitute another level of control of the inflammatory response. KEY MESSAGES: A total of 542 sRNAs were differentially expressed after aneurysmal SAH comparing with controls piRNAs and rRNAs were upregulated and miRNAs were downregulated after IA rupture The regulated sRNA showed an enrichment in the representation of some transcription factor binding sites piRNAs, tRNAs, and rRNAs showed an overrepresentation for GR, RXRA, and ERALPHA binding sites.


Assuntos
Biomarcadores , Ácidos Nucleicos Livres , MicroRNAs/sangue , RNA Ribossômico/sangue , RNA Interferente Pequeno/sangue , Hemorragia Subaracnóidea/sangue , Adulto , Suscetibilidade a Doenças , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Hemorragia Subaracnóidea/diagnóstico , Hemorragia Subaracnóidea/etiologia , Fatores de Transcrição/metabolismo
8.
Neuropsychopharmacology ; 45(2): 404-415, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31254970

RESUMO

To date, neurons have been the primary focus of research on the role of glucocorticoids in the regulation of brain function and pathological behaviors, such as addiction. Astrocytes, which are also glucocorticoid-responsive, have been recently implicated in the development of drug abuse, albeit through as yet undefined mechanisms. Here, using a spectrum of tools (whole-transcriptome profiling, viral-mediated RNA interference in vitro and in vivo, behavioral pharmacology and electrophysiology), we demonstrate that astrocytes in the nucleus accumbens (NAc) are an important locus of glucocorticoid receptor (GR)-dependent transcriptional changes that regulate rewarding effects of morphine. Specifically, we show that targeted knockdown of the GR in the NAc astrocytes enhanced conditioned responses to morphine, with a concomitant inhibition of morphine-induced neuronal excitability and plasticity. Interestingly, GR knockdown did not influence sensitivity to cocaine. Further analyses revealed GR-dependent regulation of astroglial metabolism. Notably, GR knockdown inhibited induced by glucocorticoids lactate release in astrocytes. Finally, lactate administration outbalanced conditioned responses to morphine in astroglial GR knockdown mice. These findings demonstrate a role of GR-dependent regulation of astrocytic metabolism in the NAc and a key role of GR-expressing astrocytes in opioid reward processing.


Assuntos
Analgésicos Opioides/farmacologia , Astrócitos/metabolismo , Condicionamento Psicológico/fisiologia , Ácido Láctico/metabolismo , Morfina/farmacologia , Receptores de Glucocorticoides/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Condicionamento Psicológico/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
Mol Neurobiol ; 57(2): 988-996, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31654316

RESUMO

Influence of an intracranial aneurysm (IA) rupture on the expression of miRNAs and the potential significance of the resulting changes remains poorly understood. We aimed to characterize the response to the IA rupture through the analysis of miRNAs in peripheral blood cells. Expression of small RNAs was investigated using deep transcriptome sequencing in patients in the acute phase of an IA rupture (first 72 h), in the chronic phase (3-15 months), and controls. A functional analysis and the potential interactions between miRNAs and target genes were investigated. We also measured the levels of proteins that were influenced by regulated miRNAs. We found that 106 mature miRNAs and 90 miRNA precursors were differentially expressed among the groups. The regulated miRNAs were involved in a variety of pathways, and the top pathway involved cytokine-cytokine receptor interactions. The identified miRNAs targeted the inflammatory factors HMGB1 and FASLG. Changes in their expression were detected at the mRNA and protein levels. IA rupture strongly influences the transcription profiles in peripheral blood cells. The regulated miRNAs were involved in the control of immune cell homeostasis. In summary, these results may aid in the elucidation of the molecular mechanisms that orchestrate the inflammatory response to IA rupture.


Assuntos
Inflamação/metabolismo , Aneurisma Intracraniano/metabolismo , Aneurisma Intracraniano/patologia , MicroRNAs/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Inflamação/genética , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Mensageiro/genética , Transcriptoma/fisiologia
10.
J Clin Med ; 8(11)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703409

RESUMO

: We sought to investigate whether systematic balance training modulates brain area activity responsible for postural control and influence brain-derived neurotrophic factor (BDNF) mRNA protein expression. Seventy-four older adults were randomly divided into three groups (mean age 65.34 ± 3.79 years, 30 females): Classic balance exercises (CBT), virtual reality balance exercises (VBT), and control (CON). Neuroimaging studies were performed at inclusion and after completion of the training or 12 weeks later (CON). Blood samples were obtained to measure BDNF expression. The study revealed significant interaction of sessions and groups: In the motor imagery (MI) condition for supplementary motor area (SMA) activity (Fat peak = 5.25, p < 0.05); in the action observation (AO) condition for left and right supramarginal gyrus/posterior insula (left: Fat peak = 6.48, p < 0.05; right: Fat peak = 6.92, p < 0.05); in the action observation together with motor imagery (AOMI) condition for the middle occipital gyrus (laterally)/area V5 (left: Fat peak = 6.26, p < 0.05; right: Fat peak = 8.37, p < 0.05), and in the cerebellum-inferior semilunar lobule/tonsil (Fat peak = 5.47, p < 0.05). After the training serum BDNF level has increased in CBT (p < 0.001) and in CBT compared to CON (p < 0.05). Systematic balance training may reverse the age-related cortical over-activations and appear to be a factor mediating neuroplasticity in older adults.

11.
J Transl Med ; 17(1): 141, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046777

RESUMO

BACKGROUND: Rupture of an intracranial aneurysm (IA) causes a systemic response that involves an immune/inflammatory reaction. Our previous study revealed a downregulation of genes related to T lymphocytes and an upregulation of genes related to monocytes and neutrophils after IA rupture. It remains unknown whether that resulted from alterations in transcription or cell count. We sought to characterize the systemic response to IA rupture through analysis of transcript expression profiles in peripheral blood cells. We also investigated effects of IA rupture on the composition of mononuclear cells in peripheral blood. METHODS: We included 19 patients in the acute phase of IA rupture (RAA, first 72 h), 20 patients in the chronic phase (RAC, 3-15 months), and 20 controls. Using deep transcriptome sequencing, we analyzed the expression of protein-coding and noncoding RNAs. Expression levels, transcript biotypes, alternative splicing and other features of the regulated transcripts were studied. A functional analysis was performed to determine overrepresented ontological groups among gene expression profiles. Flow cytometry was used to analyze alterations in the level of mononuclear leukocyte subpopulations. RESULTS: Comparing RAA and controls, we identified 491 differentially expressed transcripts (303 were downregulated, and 188 were upregulated in RAA). The results indicate that the molecular changes in response to IA rupture occur at the level of individual transcripts. Functional analysis revealed that the most impacted biological processes are related to regulation of lymphocyte activation and toll-like receptor signaling pathway. Differences between RAC and controls were less prominent. Analysis of leukocyte subsets revealed a significantly decreased number of CD4+ lymphocytes and increase of classical and intermediate monocytes in RAA patients compared to controls. CONCLUSIONS: IA rupture in the acute phase strongly influences the transcription profiles of peripheral blood cells as well as the composition of mononuclear cells. A specific pattern of gene expression alteration was found, suggesting a depression of lymphocyte response and enhancement of monocyte activity.


Assuntos
Aneurisma Roto/genética , Regulação da Expressão Gênica , Aneurisma Intracraniano/genética , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Transcrição Gênica , Transcriptoma/genética
12.
Transl Psychiatry ; 8(1): 255, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487639

RESUMO

Stress elicits the release of glucocorticoids (GCs) that regulate energy metabolism and play a role in emotional memory. Astrocytes express glucocorticoid receptors (GR), but their contribution to cognitive effects of GC's action in the brain is unknown. To address this question, we studied how astrocyte-specific elimination of GR affects animal behavior known to be regulated by stress. Mice with astrocyte-specific ablation of GR presented impaired aversive memory expression in two different paradigms of Pavlovian learning: contextual fear conditioning and conditioned place aversion. These mice also displayed compromised regulation of genes encoding key elements of the glucose metabolism pathway upon GR stimulation. In particular, we identified that the glial, but not the neuronal isoform of a crucial stress-response molecule, Sgk1, undergoes GR-dependent regulation in vivo and demonstrated the involvement of SGK1 in regulation of glucose uptake in astrocytes. Together, our results reveal astrocytes as a central element in GC-dependent formation of aversive memory and suggest their relevance for stress-induced alteration of brain glucose metabolism. Consequently, astrocytes should be considered as a cellular target of therapies of stress-induced brain diseases.


Assuntos
Astrócitos/metabolismo , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Memória/fisiologia , Nociceptividade/fisiologia , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/fisiologia , Estresse Psicológico/metabolismo , Animais , Proteínas Imediatamente Precoces/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/metabolismo
13.
Neuropharmacology ; 141: 223-237, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30170084

RESUMO

A specific activation of metabotropic glutamate receptor 7 (mGluR7) has been shown to be neuroprotective in various models of neuronal cell damage, however, its role in glia cell survival has not been studied, yet. Thus, we performed comparative experiments estimating protective effects of the mGluR7 allosteric agonist AMN082 in glia, neuronal and neuronal-glia cell cultures against various harmful stimuli. First, the transcript levels of mGluR7 and other subtypes of group II and III mGluRs in cortical neuronal, neuronal-glia and glia cell cultures have been measured by qPCR method. Next, we demonstrated that AMN082 with similar efficiency attenuated the glia cell damage evoked by staurosporine (St) and doxorubicin (Dox). The AMN082-mediated glioprotection was mGluR7-dependent and associated with decreased DNA fragmentation without involvement of caspase-3 inhibition. Moreover, the inhibitors of PI3K/Akt and MAPK/ERK1/2 pathways blocked the protective effect of AMN082. In neuronal and neuronal-glia cell cultures in the model of glutamate (Glu)- but not St-evoked cell damage, we showed a significant glia contribution to mGluR7-mediated neuroprotection. Finally, by using glia and neuronal cells derived from mGluR7+/+ and mGluR7-/- mice we demonstrated a higher cell-damaging effect of St and Dox in mGluR7-deficient glia but not in neurons (cerebellar granule cells). Our present data showed for the first time a glioprotective potential of AMN082 underlain by mechanisms involving the activation of PI3K/Akt and MAPK/ERK1/2 pathways and pro-survival role of mGluR7 in glia cells. These findings together with the confirmed neuroprotective properties of AMN082 justify further research on mGluR7-targeted therapies for various CNS disorders.


Assuntos
Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/agonistas , Animais , Compostos Benzidrílicos/antagonistas & inibidores , Caspase 3/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/metabolismo , Técnicas de Cocultura , Fragmentação do DNA/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Doxorrubicina/antagonistas & inibidores , Inibidores Enzimáticos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/biossíntese , Receptores de Glutamato Metabotrópico/genética , Transdução de Sinais , Estaurosporina/antagonistas & inibidores
14.
Cancer Lett ; 432: 1-16, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29885518

RESUMO

The present study aimed to determine the role of metabotropic glutamate receptor 8 (mGluR8) in tumor biology. Using various molecular approaches (RNAi or GRM8 cDNA), cell clones with downregulated (human neuroblastoma SH-SY5Y and human glioma LN229) or overexpressed (human glioma U87-MG and LN18 cell lines) mGluR8 were generated. Next, comparative studies on cell proliferation and migration rates, induction of apoptosis and chemosensitivity were performed among these clones. The mGluR8-downregulated SH-SY5Y clones proliferated faster and were more resistant to cytotoxic action of staurosporine, doxorubicin, irinotecan and cisplatin when compared to control cells. Moreover, these clones were characterized by a lower activity of caspases, calpains and some kinases (GSK-3ß, Akt and JNK). The mGluR8-downregulated LN229 clones migrated faster and were less prone to cell-damaging effect of staurosporine and irinotecan when compared with relevant control cells. In contrast, in GRM8-overexpressing U87-MG and LN18 clones, a decreased cell proliferation, increased apoptosis and elevated vulnerability to some cytotoxic agents were found. Altogether, our in vitro data for the first time evidenced a tumor suppressor and chemosensitizing role of mGluR8.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Glioma/patologia , Neuroblastoma/patologia , Receptores de Glutamato Metabotrópico/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Movimento Celular , Expressão Ectópica do Gene , Regulação Neoplásica da Expressão Gênica , Glioma/tratamento farmacológico , Glioma/metabolismo , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Receptores de Glutamato Metabotrópico/genética , Células Tumorais Cultivadas
15.
BMC Neurosci ; 18(1): 37, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28381250

RESUMO

BACKGROUND: The mechanisms of steroids actions in the brain mainly involve the binding and nuclear translocation of specific cytoplasmic receptors. These receptors can act as transcription factors and regulate gene expression. However, steroid-dependent transcriptional regulation in different types of neural cells is not yet fully understood. The aim of this study was to evaluate and compare transcriptional alterations induced by various steroid receptor agonists in primary cultures of astrocytes and neurons from mouse brain. RESULTS: We utilized whole-genome microarrays (Illumina Mouse WG-6) and quantitative PCR analyses to measure mRNA abundance levels. To stimulate gene expression we treated neuronal and astroglial cultures with dexamethasone (100 nM), aldosterone (200 nM), progesterone (200 nM), 5α-dihydrotestosterone (200 nM) and ß-Estradiol (200 nM) for 4 h. Neurons were found to exhibit higher levels of expression of mineralocorticoid receptor, progesterone receptor and estrogen receptor 2 than astrocytes. However, higher mRNA level of glucocorticoid receptor mRNA was observed in astrocytes. We identified 956 genes regulated by steroids. In astrocytes we found 381 genes altered by dexamethasone and 19 altered by aldosterone. Functional classification of the regulated genes indicated their putative involvement in multiple aspects of cell metabolism (up-regulated Slc2a1, Pdk4 and Slc45a3) and the inflammatory response (down-regulated Ccl3, Il1b and Tnf). Progesterone, dihydrotestosterone and estradiol did not change gene expression in astrocytes. We found no significant changes in gene expression in neurons. CONCLUSIONS: The obtained results indicate that glial cells might be the primary targets of transcriptional action of steroids in the central nervous system. Substantial changes in gene expression driven by the glucocorticoid receptor imply an important role for the hypothalamic-pituitary-adrenal axis in the hormone-dependent regulation of brain physiology. This is an in vitro study. Hence, the model may not accurately reflect all the effects of steroids on gene expression in neurons in vivo.


Assuntos
Astrócitos/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de Esteroides/agonistas , Esteroides/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Células Cultivadas , Análise por Conglomerados , Corpo Estriado/metabolismo , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Análise em Microsséries , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Receptores de Esteroides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma/fisiologia
16.
Neuroscience ; 330: 121-37, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27235740

RESUMO

Coping skills are essential in determining the outcomes of aversive life events. Our research was aimed to elucidate the molecular underpinnings of different coping styles in two inbred mouse strains, C57BL/6J and SWR/J. We compared the influence of a preceding stressor (0.5h of restraint) on behavioral and gene expression profiles between these two strains. The C57BL/6J strain exhibited increased conditioned fear and high immobility (passive coping). Oppositely, the SWR/J mice demonstrated low freezing and immobility, low post-restraint anxiety and considerable struggling during the forced swim test (active coping). Gene profiling in the amygdala revealed transcriptional patterns that were related to the differential stress reactivity, such as the activation of glucocorticoid-dependent genes specifically in the C57BL/6J mice. Post-restraint blood sampling for corticosterone levels confirmed the association of hypothalamic-pituitary-adrenal (HPA) activation with a passive coping style. Pharmacological tools were used to modulate the stress-coping strategies. The blockade of opioid receptors (ORs) before the aversive event caused transcriptional and neuroendocrine changes in the SWR/J mice that were characteristic of the passive coping strategy. We found that treatment with a glucocorticoid receptor (GR) agonist (dexamethasone (DEX), 4mg/kg) impaired the consolidation of fear memory in the C57BL/6J mice and that this effect was reversed by OR blockade (naltrexone (NTX), 2mg/kg). In parallel, a glucocorticoid receptor antagonist (mifepristone (MIF), 20mg/kg) reversed the effect of morphine (20mg/kg) on conditioned fear in the C57BL/6J mice. Our results suggest that in mice, stress-coping strategies are determined by opioid-dependent mechanisms that modulate activity of the HPA axis.


Assuntos
Adaptação Psicológica/fisiologia , Glucocorticoides/metabolismo , Camundongos Endogâmicos/metabolismo , Camundongos Endogâmicos/psicologia , Peptídeos Opioides/metabolismo , Estresse Psicológico/metabolismo , Adaptação Psicológica/efeitos dos fármacos , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Dexametasona/farmacologia , Medo/efeitos dos fármacos , Medo/fisiologia , Reação de Congelamento Cataléptica/efeitos dos fármacos , Reação de Congelamento Cataléptica/fisiologia , Masculino , Mifepristona/farmacologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Naltrexona/farmacologia , Neurotransmissores/farmacologia , Receptores de Glucocorticoides/metabolismo , Receptores Opioides/metabolismo , Especificidade da Espécie , Estresse Psicológico/tratamento farmacológico
17.
PLoS One ; 11(4): e0154135, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27104346

RESUMO

In this study we have examined the effect of prolonged endurance training program on the pulmonary oxygen uptake (V'O2) kinetics during heavy-intensity cycling-exercise and its impact on maximal cycling and running performance. Twelve healthy, physically active men (mean±SD: age 22.33±1.44 years, V'O2peak 3198±458 mL ∙ min-1) performed an endurance training composed mainly of moderate-intensity cycling, lasting 20 weeks. Training resulted in a decrease (by ~5%, P = 0.027) in V'O2 during prior low-intensity exercise (20 W) and in shortening of τp of the V'O2 on-kinetics (30.1±5.9 s vs. 25.4±1.5 s, P = 0.007) during subsequent heavy-intensity cycling. This was accompanied by a decrease of the slow component of V'O2 on-kinetics by 49% (P = 0.001) and a decrease in the end-exercise V'O2 by ~5% (P = 0.005). An increase (P = 0.02) in the vascular endothelial growth factor receptor 2 mRNA level and a tendency (P = 0.06) to higher capillary-to-fiber ratio in the vastus lateralis muscle were found after training (n = 11). No significant effect of training on the V'O2peak was found (P = 0.12). However, the power output reached at the lactate threshold increased by 19% (P = 0.01). The power output obtained at the V'O2peak increased by 14% (P = 0.003) and the time of 1,500-m performance decreased by 5% (P = 0.001). Computer modeling of the skeletal muscle bioenergetic system suggests that the training-induced decrease in the slow component of V'O2 on-kinetics found in the present study is mainly caused by two factors: an intensification of the each-step activation (ESA) of oxidative phosphorylation (OXPHOS) complexes after training and decrease in the ''additional" ATP usage rising gradually during heavy-intensity exercise.


Assuntos
Pulmão/fisiologia , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Músculo Quadríceps/fisiologia , Western Blotting , Simulação por Computador , Exercício Físico/fisiologia , Teste de Esforço , Expressão Gênica , Frequência Cardíaca/fisiologia , Humanos , Lactatos/sangue , Pulmão/metabolismo , Masculino , Modelos Biológicos , Proteínas Musculares/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio/genética , Resistência Física/genética , Músculo Quadríceps/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Corrida/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Adulto Jovem
18.
Free Radic Biol Med ; 89: 147-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26393425

RESUMO

Lung mucoepidermoid carcinoma (MEC) is a very poorly characterized rare subtype of non-small-cell lung cancer (NSCLC) associated with more favorable prognoses than other forms of intrathoracic malignancies. We have previously identified that heme oxygenase-1 (HO-1, encoded by HMOX1) inhibits MEC tumor growth and modulates the transcriptome of microRNAs. Here we investigate the role of a major upstream regulator of HO-1 and a master regulator of cellular antioxidant responses, transcription factor Nrf2, in MEC biology. Nrf2 overexpression in the NCI-H292 MEC cell line mimicked the phenotype of HO-1 overexpressing cells, leading to inhibition of cell proliferation and migration and down-regulation of oncogenic miR-378. HMOX1 silencing identified HO-1 as a major mediator of Nrf2 action. Nrf2- and HO-1 overexpressing cells exhibited strongly diminished expression of multiple matrix metalloproteinases and inflammatory cytokine interleukin-1ß, which was confirmed in an NCI-HO-1 xenograft model. Overexpression of HO-1 altered not only human MMP levels in tumor cells but also murine MMP levels within tumor microenvironment and metastatic niche. This could possibly contribute to decreased metastasis to the lungs and inhibitory effects of HO-1 on MEC tumor growth. Our profound transcriptome analysis and molecular characterization of the mucoepidermoid lung carcinoma helps to understand the specific clinical presentations of these tumors, emphasizing a unique antitumoral role of the Nrf2-HO-1 axis.


Assuntos
Carcinoma Mucoepidermoide/prevenção & controle , Regulação Neoplásica da Expressão Gênica , Heme Oxigenase-1/metabolismo , Neoplasias Pulmonares/prevenção & controle , Metaloproteinases da Matriz/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Apoptose , Western Blotting , Carcinoma Mucoepidermoide/metabolismo , Carcinoma Mucoepidermoide/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/prevenção & controle , Proliferação de Células , Regulação para Baixo , Imunofluorescência , Perfilação da Expressão Gênica , Heme Oxigenase-1/genética , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Metaloproteinases da Matriz/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Neuropharmacology ; 99: 328-36, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26254862

RESUMO

The mechanisms that control the selection of transcription initiation and termination sites in response to pharmacological stimulation of neuronal cells are poorly understood. We used next-generation sequencing and bioinformatics to construct a genome-wide inventory of protein-coding and non-coding transcripts altered by antidepressant treatment. We analyzed available ChIP-seq data to identify mechanisms that control drug-inducible expression of alternative gene variants in the brain. We identified 153 transcripts of various biotypes regulated in the mouse striatum in response to tranylcypromine or mianserin (at a 0.1% FDR threshold). Five drug-responsive gene patterns are enriched in protein-coding variants (77%), regulated by different sets of transcriptional factors (including SRF/CREB1 and GR/CTCF) and expressed in separate cellular compartments of the brain. We found that alterations mediated by proximal promoters in neurons are more specific in the selection of regulated transcriptional isoforms compared with enhancer-dependent alterations in glia. The change in transcriptional programs, from housekeeping to inducible, provides cells with the resource of functionally distinct proteins. We conclude that the regulation of drug-induced brain plasticity may occur at the level of transcripts rather than genes. The expression of specific isoforms in response to antidepressants may constitute a trigger that initiates the long-lasting effects of these drugs.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Antidepressivos/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Mianserina/farmacologia , Tranilcipromina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transcriptoma/efeitos dos fármacos
20.
Methods Mol Biol ; 1230: 65-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25293316

RESUMO

Whole-genome screening methods are unique approach to search for novel genes and molecular pathways involved in drug action. High-throughput profiling allows the gene expression levels of tens of thousands of transcripts to be measured simultaneously. Here, we describe transcriptional profiling in a specific area of the brain using DNA microarrays and next-generation sequencing.


Assuntos
Analgésicos Opioides/metabolismo , Encéfalo/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Analgésicos Opioides/administração & dosagem , Mapeamento Encefálico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA