Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nat Immunol ; 25(6): 941-943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811817
2.
Am J Physiol Cell Physiol ; 326(3): C707-C711, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189135

RESUMO

Ketone bodies are short-chain fatty acids produced by the liver during periods of limited glucose availability, such as during fasting or low carbohydrate feeding. Recent studies have highlighted important nonmetabolic functions of the most abundant ketone body, ß-hydroxybutyrate (BHB). Notably, many of these functions, including limiting specific sources of inflammation, histone deacetylase inhibition, NFκB inhibition, and GPCR stimulation, are particularly important to consider in immune cells. Likewise, dietary manipulations like caloric restriction or ketogenic diet feeding have been associated with lowered inflammation, improved health outcomes, and improved host defense against infection. However, the underlying mechanisms of the broad benefits of ketosis remain incompletely understood. In this Perspective, we contextualize the current state of the field of nonmetabolic functions of ketone bodies specifically in the immune system and speculate on the molecular explanations and broader physiological significance.


Assuntos
Corpos Cetônicos , Cetose , Humanos , Ácido 3-Hidroxibutírico , Sistema Imunitário , Inflamação
3.
Front Neurol ; 14: 1288801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38145117

RESUMO

Introduction: Despite a growing emphasis on discourse processing in clinical neuroscience, relatively little is known about the neurobiology of discourse production impairments. Individuals with a history of left or right hemisphere stroke can exhibit difficulty with communicating meaningful discourse content, which implies both cerebral hemispheres play a role in this skill. However, the extent to which successful production of discourse content relies on network connections within domain-specific vs. domain-general networks in either hemisphere is unknown. Methods: In this study, 45 individuals with a history of either left or right hemisphere stroke completed resting state fMRI and the Cookie Theft picture description task. Results: Participants did not differ in the total number of content units or the percentage of interpretative content units they produced. Stroke survivors with left hemisphere damage produced significantly fewer content units per second than individuals with right hemisphere stroke. Intrinsic connectivity of the left language network was significantly weaker in the left compared to the right hemisphere stroke group for specific connections. Greater efficiency of communication of picture scene content was associated with stronger left but weaker right frontotemporal connectivity of the language network in patients with a history of left hemisphere (but not right hemisphere) stroke. No significant relationships were found between picture description measures and connectivity of the dorsal attention, default mode, or salience networks or with connections between language and other network regions. Discussion: These findings add to prior behavioral studies of picture description skills in stroke survivors and provide insight into the role of the language network vs. other intrinsic networks during discourse production.

4.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014285

RESUMO

Starvation and low carbohydrate diets lead to the accumulation of the ketone body, ß-hydroxybutyrate (BHB), whose blood concentrations increase more than 10-fold into the millimolar range. In addition to providing a carbon source, BHB accumulation triggers lysine ß-hydroxybutyrylation (Kbhb) of proteins via unknown mechanisms. As with other lysine acylation events, Kbhb marks can be removed by histone deacetylases (HDACs). Here, we report that class I HDACs unexpectedly catalyze protein lysine modification with ß-hydroxybutyrate (BHB). Mutational analyses of the HDAC2 active site reveal a shared reliance on key amino acids for classical deacetylation and non-canonical HDAC-catalyzed ß-hydroxybutyrylation. Also consistent with reverse HDAC activity, Kbhb formation is driven by mass action and substrate availability. This reverse HDAC activity is not limited to BHB but also extends to multiple short-chain fatty acids. The reversible activity of class I HDACs described here represents a novel mechanism of PTM deposition relevant to metabolically-sensitive proteome modifications.

5.
iScience ; 26(7): 107235, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485368

RESUMO

Ketone bodies are short-chain fatty acids produced in the liver during periods of limited glucose availability that provide an alternative energy source for the brain, heart, and skeletal muscle. Beyond this metabolic role, ß-hydroxybutyrate (BHB), is gaining recognition as a signaling molecule. Lysine ß-hydroxybutyrylation (Kbhb) is a newly discovered post-translational modification in which BHB is covalently attached to lysine ε-amino groups. This protein adduct is metabolically sensitive, dependent on BHB concentration, and found on proteins in multiple intracellular compartments. Therefore, Kbhb is hypothesized to be an important component of ketone body-regulated physiology. Kbhb on histones is proposed to be an epigenetic regulator, which links metabolic alterations to gene expression. However, we found that the widely used antibody against ß-hydroxybutyrylated lysine 9 on histone H3 (H3K9bhb) also recognizes other modification(s) that likely include acetylation. Therefore, caution must be used when interpreting gene regulation data acquired with the H3K9bhb antibody.

6.
bioRxiv ; 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37090555

RESUMO

Ketone bodies are short chain fatty acids produced in the liver during periods of limited glucose availability that provide an alternative source of energy for the brain, heart, and skeletal muscle. Beyond this classical metabolic role, ß-hydroxybutyrate (BHB), is gaining recognition as a pleiotropic signaling molecule. Lysine ß-hydroxybutyrylation (Kbhb) is a newly discovered post-translational modification in which BHB is covalently attached to lysine ε-amino groups. This novel protein adduct is metabolically sensitive, dependent on BHB concentration, and found on proteins in multiple intracellular compartments, including the mitochondria and nucleus. Therefore, Kbhb is hypothesized to be an important component of ketone body-regulated physiology. Kbhb on histones is proposed to be an epigenetic regulator, which links metabolic alterations to gene expression. However, we found that the widely used antibody against the ß-hydroxybutyrylated lysine 9 on histone H3 (H3K9bhb) also recognizes other modification(s), which are increased by deacetylation inhibition and include likely acetylations. Therefore, caution must be used when interpreting gene regulation data acquired with the H3K9bhb antibody.

7.
Brain Commun ; 5(2): fcad014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056476

RESUMO

In stroke aphasia, lesion volume is typically associated with aphasia severity. Although this relationship is likely present throughout recovery, different factors may affect lesion volume and behaviour early into recovery (acute) and in the later stages of recovery (chronic). Therefore, studies typically separate patients into two groups (acute/chronic), and this is often accompanied with arguments for and against using data from acute stroke patients over chronic. However, no comprehensive studies have provided strong evidence of whether the lesion-behaviour relationship early in recovery is comparable to later in the recovery trajectory. To that end, we investigated two aims: (i) whether lesion data from acute and chronic patients yield similar results in region-based lesion-symptom mapping analyses and (ii) if models based on one timepoint accurately predict the other. Lesions and aphasia severity scores from acute (N = 63) and chronic (N = 109) stroke survivors with aphasia were entered into separate univariate region-based lesion-symptom mapping analyses. A support vector regression model was trained on lesion data from either the acute or chronic data set to give an estimate of aphasia severity. Four model-based analyses were conducted: trained on acute/chronic using leave-one-out, tested on left-out behaviour or trained on acute/chronic to predict the other timepoint. Region-based lesion-symptom mapping analyses identified similar but not identical regions in both timepoints. All four models revealed positive correlations between actual and predicted Western Aphasia Battery-Revised aphasia-quotient scores. Lesion-to-behaviour predictions were almost equivalent when comparing within versus across stroke stage, despite differing lesion size/locations and distributions of aphasia severity between stroke timepoints. This suggests that research investigating the brain-behaviour relationship including subsets of patients from only one timepoint may also be applicable at other timepoints, although it is important to note that these comparable findings may only be seen using broad measures such as aphasia severity, rather than those aimed at identifying more specific deficits. Subtle differences found between timepoints may also be useful in understanding the nature of lesion volume and aphasia severity over time. Stronger correlations found when predicting acute behaviour (e.g. predicting acute: r = 0.6888, P < 0.001, predicting chronic r = 0.5014, P < 0.001) suggest that the acute lesion/perfusion patterns more accurately capture the critical changes in underlying vascular territories. Differences in critical brain regions between timepoints may shed light on recovery patterns. Future studies could focus on a longitudinal design to compare acute and chronic patients in a more controlled manner.

8.
Stroke ; 54(4): 912-920, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36912144

RESUMO

BACKGROUND: Transcranial direct-current stimulation (tDCS) is a promising adjunct to therapy for chronic aphasia. METHODS: This single-center, randomized, double-blind, sham-controlled efficacy trial tested the hypothesis that anodal tDCS augments language therapy in subacute aphasia. Secondarily, we compared the effect of tDCS on discourse measures and quality of life and compared the effects on naming to previous findings in chronic stroke. Right-handed English speakers with aphasia <3 months after left hemisphere ischemic stroke were included, unless they had prior neurological or psychiatric disease or injury or were taking certain medications (34 excluded; final sample, 58). Participants were randomized 1:1, controlling for age, aphasia type, and severity, to receive 20 minutes of tDCS (1 mA) or sham-tDCS in addition to fifteen 45-minute sessions of naming treatment (plus standard care). The primary outcome variable was change in naming accuracy of untrained pictures pretreatment to 1-week posttreatment. RESULTS: Baseline characteristics were similar between the tDCS (N=30) and sham (N=28) groups: patients were 65 years old, 53% male, and 2 months from stroke onset on average. In intent-to-treat analysis, the adjusted mean change from baseline to 1-week posttreatment in picture naming was 22.3 (95% CI, 13.5-31.2) for tDCS and 18.5 (9.6-27.4) for sham and was not significantly different. Content and efficiency of picture description improved more with tDCS than sham. Groups did not differ in quality of life improvement. No patients were withdrawn due to adverse events. CONCLUSIONS: tDCS did not improve recovery of picture naming but did improve recovery of discourse. Discourse skills are critical to participation. Future research should examine tDCS in a larger sample with richer functional outcomes. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT02674490.


Assuntos
Afasia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Masculino , Humanos , Idoso , Feminino , Qualidade de Vida , Afasia/terapia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Método Duplo-Cego
9.
J Biol Chem ; 299(3): 103005, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36775129

RESUMO

Aging is accompanied by chronic low-grade inflammation, but the mechanisms that allow this to persist are not well understood. Ketone bodies are alternative fuels produced when glucose is limited and improve indicators of healthspan in aging mouse models. Moreover, the most abundant ketone body, ß-hydroxybutyrate, inhibits the NLRP3 inflammasome in myeloid cells, a key potentiator of age-related inflammation. Given that myeloid cells express ketogenic machinery, we hypothesized this pathway may serve as a metabolic checkpoint of inflammation. To test this hypothesis, we conditionally ablated ketogenesis by disrupting expression of the terminal enzyme required for ketogenesis, 3-Hydroxy-3-Methylglutaryl-CoA Lyase (HMGCL). By deleting HMGCL in the liver, we validated the functional targeting and establish that the liver is the only organ that can produce the life-sustaining quantities of ketone bodies required for survival during fasting or ketogenic diet feeding. Conditional ablation of HMGCL in neutrophils and macrophages had modest effects on body weight and glucose tolerance in aging but worsened glucose homeostasis in myeloid cell-specific Hmgcl-deficient mice fed a high-fat diet. Our results suggest that during aging, liver-derived circulating ketone bodies might be more important for deactivating the NLRP3 inflammasome and controlling organismal metabolism.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Corpos Cetônicos , Inflamação/genética , Glucose/metabolismo , Imunidade Inata
10.
Public Health Nurs ; 40(2): 317-321, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36571788

RESUMO

During the early phases of the COVID-19 vaccine efforts, there was limited supply of the vaccine available to administer. However, as the vaccine supply improved, there was a lack of qualified personnel to administer the vaccine. VaxForce, a volunteer workforce management system to vet healthcare professionals and students and match them with existing vaccination events, was created. VaxForce activities were mainly focused on under-resourced communities. From March 2021 through July 2022, VaxForce mobilized 316 health professional volunteers in 72 vaccination events administering over 8451 vaccines in 7 counties in California. The racial and ethnic profile of vaccine recipients in VaxForce events were reported to be 49% Latinx, 26% Black, 4% Asian/Pacific Islander, 18% White, 3% Mixed Race.


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas contra COVID-19 , Vacinação , Estudantes
11.
PLoS One ; 17(10): e0275664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36288353

RESUMO

Aphasia, the loss of language ability following damage to the brain, is among the most disabling and common consequences of stroke. Subcortical stroke, occurring in the basal ganglia, thalamus, and/or deep white matter can result in aphasia, often characterized by word fluency, motor speech output, or sentence generation impairments. The link between greater lesion volume and acute aphasia is well documented, but the independent contributions of lesion location, cortical hypoperfusion, prior stroke, and white matter degeneration (leukoaraiosis) remain unclear, particularly in subcortical aphasia. Thus, we aimed to disentangle the contributions of each factor on language impairments in left hemisphere acute subcortical stroke survivors. Eighty patients with acute ischemic left hemisphere subcortical stroke (less than 10 days post-onset) participated. We manually traced acute lesions on diffusion-weighted scans and prior lesions on T2-weighted scans. Leukoaraiosis was rated on T2-weighted scans using the Fazekas et al. (1987) scale. Fluid-attenuated inversion recovery (FLAIR) scans were evaluated for hyperintense vessels in each vascular territory, providing an indirect measure of hypoperfusion in lieu of perfusion-weighted imaging. We found that language performance was negatively correlated with acute/total lesion volumes and greater damage to substructures of the deep white matter and basal ganglia. We conducted a LASSO regression that included all variables for which we found significant univariate relationships to language performance, plus nuisance regressors. Only total lesion volume was a significant predictor of global language impairment severity. Further examination of three participants with severe language impairments suggests that their deficits result from impairment in domain-general, rather than linguistic, processes. Given the variability in language deficits and imaging markers associated with such deficits, it seems likely that subcortical aphasia is a heterogeneous clinical syndrome with distinct causes across individuals.


Assuntos
Afasia , Transtornos da Linguagem , Leucoaraiose , Acidente Vascular Cerebral , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Leucoaraiose/complicações , Leucoaraiose/diagnóstico por imagem , Afasia/etiologia , Afasia/complicações , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Idioma , Imageamento por Ressonância Magnética/efeitos adversos , Transtornos da Linguagem/complicações
12.
Am J Speech Lang Pathol ; 31(5S): 2301-2312, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36075208

RESUMO

PURPOSE: Adults with right hemisphere damage demonstrate differences in connected speech compared to controls, but systematic, quantitative methods to capture these differences are lacking. The current study aimed to (a) investigate if measures using the Modern Cookie Theft picture description would identify discourse differences in acute right hemisphere stroke, and (b) examine if discourse differences were associated with documented cognitive impairment. METHOD: Eighty-four participants completed the Modern Cookie Theft picture description within 5 days of right hemisphere stroke. Descriptions were analyzed for multiple microlinguistic characteristics. Medical charts were retrospectively reviewed for documented presence of cognitive impairment. RESULTS: Individuals with acute right hemisphere stroke produced fewer content units, total syllables, and lower left-right content unit ratios compared to controls, indicating a paucity of informativeness. Presence of cognitive impairment was associated with fewer content units produced. CONCLUSIONS: Multiple measures of microlinguistic discourse characteristics differentiated adults with right hemisphere stroke from controls, highlighting variations in both the quantity and quality of connected speech. Findings continue to underscore the contribution and correlation between cognitive skills and discourse performance. Future work is needed to assess the relationship between particular cognitive domains and discourse production as well as to investigate longitudinal changes to discourse production during stroke recovery. SUPPLEMENTAL MATERIAL: https://doi.org/10.23641/asha.20778541.


Assuntos
Disfunção Cognitiva , Acidente Vascular Cerebral , Adulto , Humanos , Estudos Retrospectivos , Roubo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Fala , Disfunção Cognitiva/complicações
13.
Lang Cogn Neurosci ; 37(3): 330-347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665076

RESUMO

Most naming error lesion-symptom mapping (LSM) studies have focused on semantic and/or phonological errors. Anomic individuals also produce unrelated word errors, which may be linked to semantic or modality-independent lexical deficits. To investigate the neural underpinnings of rarely-studied unrelated errors, we conducted LSM analyses in 100 individuals hospitalized with a left hemisphere stroke who completed imaging protocols and language assessments. We used least absolute shrinkage and selection operator regression to capture relationships between naming errors and dysfunctional brain tissue metrics (regional damage or hypoperfusion in vascular territories) in two groups: participants with and without impaired single-word auditory comprehension. Hypoperfusion-particularly within the parietal lobe-was an important error predictor, especially for the unimpaired group. In both groups, higher unrelated error proportions were associated with primarily ventral stream damage, the language route critical for processing meaning. Nonetheless, brain metrics implicated in unrelated errors were distinct from semantic error correlates.

14.
Am J Speech Lang Pathol ; 31(4): 1736-1754, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35605599

RESUMO

PURPOSE: There are few evidence-based treatments for language deficits in primary progressive aphasia (PPA). PPA treatments are often adopted from the poststroke aphasia literature. The poststroke aphasia literature has shown promising results using Verb Network Strengthening Treatment (VNeST), a behavioral therapy that focuses on improving naming by producing verbs and their arguments in phrases and sentences. Emerging research in poststroke aphasia and PPA has shown promising results pairing behavioral language therapy with transcranial direct current stimulation (tDCS). METHOD: This study used a double-blind, within-subjects, sham-controlled crossover design to study the effect of anodal tDCS applied to left inferior frontal gyrus (IFG) plus VNeST versus VNeST plus sham stimulation in two individuals with nonfluent variant PPA and one individual with logopenic variant PPA. Participants received two phases of treatment, each with 15 1-hr sessions of VNeST. One phase paired VNeST with tDCS stimulation, and one with sham. For each phase, language testing was conducted at baseline, and at 1 week and 8 weeks posttreatment conclusion. For each participant, treatment efficacy was evaluated for each treatment phase by comparing the mean change in accuracy between baseline and the follow-up time points for naming trained verbs (primary outcome measure), untrained verbs, and nouns on the Object and Action Naming Battery. Mean change from baseline was also directly compared between tDCS and sham phases at each time point. RESULTS: Results revealed a different pattern of outcomes for each of the participants. A tDCS advantage was not found for trained verbs for any participant. Two participants with nonfluent variant PPA had a tDCS advantage for generalization to naming of untrained verbs, which was apparent at 1 week and 8 weeks posttreatment. One participant with nonfluent variant also showed evidence of generalization to sentence production in the tDCS phase. CONCLUSION: VNeST plus anodal tDCS stimulation of left IFG shows promising results for improving naming in PPA.


Assuntos
Afasia Primária Progressiva , Afasia , Estimulação Transcraniana por Corrente Contínua , Afasia/terapia , Afasia Primária Progressiva/terapia , Estudos Cross-Over , Método Duplo-Cego , Humanos , Testes de Linguagem , Terapia da Linguagem/métodos , Estimulação Transcraniana por Corrente Contínua/métodos
15.
Neuroimage Clin ; 34: 102991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35339984

RESUMO

In acute ischemic stroke, reported relationships between lesion metrics and behavior have largely focused on lesion volume and location. However, hypoperfusion has been shown to correlate with deficits in the acute stage. Hypoperfusion is typically identified using perfusion imaging in clinical settings, which requires contrast. Unfortunately, contrast is contraindicated for some individuals. An alternative method has been proposed to identify hypoperfusion using hyperintense vessels on fluid-attenuated inversion recovery (FLAIR) imaging. This study aimed to validate the clinical importance of considering hypoperfusion when accounting for behavior in acute stroke and demonstrate the clinical utility of scoring the presence of hyperintense vessels to quantify it. One hundred and fifty-three participants with acute ischemic stroke completed a battery of commonly-used neurological and behavioral measures. Clinical MRIs were used to determine lesion volume and to score the presence of hyperintense vessels seen on FLAIR images to estimate severity of hypoperfusion in six different vascular regions. National Institutes of Health Stroke Scale (NIHSS) scores, naming accuracy (left hemisphere strokes), and language content produced during picture description were examined in relation to lesion volume, hypoperfusion, and demographic variables using correlational analyses and multivariable linear regression. Results showed that lesion volume and hypoperfusion, in addition to demographic variables, were independently associated with performance on NIHSS, naming, and content production. Specifically, hypoperfusion in the frontal lobe independently correlated with NIHSS scores, while hypoperfusion in parietal areas independently correlated with naming accuracy and content production. These results correspond to previous reports associating hypoperfusion with function, confirming that hypoperfusion is an important consideration-beyond lesion volume-when accounting for behavior in acute ischemic stroke. Quantifying hypoperfusion using FLAIR hyperintense vessels can be an essential clinical tool when other methods of identifying hypoperfusion are unavailable or time prohibitive.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Isquemia Encefálica/complicações , Isquemia Encefálica/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão
16.
Stroke ; 53(6): 2016-2025, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35291820

RESUMO

BACKGROUND: Perfusion and structural imaging play an important role in ischemic stroke. Magnetic resonance fingerprinting (MRF) arterial spin labeling (ASL) is a novel noninvasive method of ASL perfusion that allows simultaneous estimation of cerebral blood flow (CBF), bolus arrival time (BAT), and tissue T1 map in a single scan of <4 minutes. Here, we evaluated the utility of MRF-ASL in patients with ischemic stroke in terms of detecting hemodynamic and structural damage and predicting neurological deficits and disability. METHODS: A total of 34 patients were scanned on 3T magnetic resonance imaging. MRF-ASL, standard single-delay pseudo-continuous ASL, T2-weighted, and diffusion magnetic resonance imaging were performed. Regions of interest of lesion and contralateral normal tissues were manually delineated. CBF (with 2 different compartmental models), BAT, and tissue T1 parameters were quantified. Cross-sectional linear regression analyses were performed to examine the relationship between MRF-ASL parameters and National Institutes of Health Stroke Scale (NIHSS) and modified Rankin Scale. Receiver operating characteristic analyses were performed to determine the utility of MRF-ASL in the classification of stroke lesion voxels. RESULTS: MRF-ASL derived parameters revealed a significant difference between stroke lesion and contralateral normal regions of interest, in that lesion regions manifested a lower CBF1-compartment (P<0.001), lower CBF2-compartment (P<0.001), longer BAT (P=0.002), and longer T1 (P<0.001) compared with normal regions of interest. NIHSS scores at acute stage revealed a strong association with lesion-normal differences in CBF1-compartment,diff (ß=-0.11, P=0.008), CBF2-compartment,diff (ß=-0.16, P=0.003), and T1,diff (ß=0.008, P=0.001). MRF-ASL parameters were also predictive of NIHSS score and modified Rankin Scale scale measured at a later stage, although the degree of the associations was weaker. These associations tended to be even stronger when the MRF-ASL data were acquired at the acute/subacute stage. Compared with standard pseudo-continuous ASL, the multiparametric capability of MRF-ASL yielded higher area under curve values in the receiver operating characteristic analyses of stroke voxel classifications. CONCLUSIONS: MRF-ASL may provide a new approach for quantitative hemodynamic and structural imaging in ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Circulação Cerebrovascular/fisiologia , Estudos Transversais , Hemodinâmica , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Marcadores de Spin , Acidente Vascular Cerebral/diagnóstico por imagem
17.
Handb Clin Neurol ; 185: 297-315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35078607

RESUMO

Signed languages are naturally occurring, fully formed linguistic systems that rely on the movement of the hands, arms, torso, and face within a sign space for production, and are perceived predominantly using visual perception. Despite stark differences in modality and linguistic structure, functional neural organization is strikingly similar to spoken language. Generally speaking, left frontal areas support sign production, and regions in the auditory cortex underlie sign comprehension-despite signers not relying on audition to process language. Given this, should a deaf or hearing signer suffer damage to the left cerebral hemisphere, language is vulnerable to impairment. Multiple cases of sign language aphasia have been documented following left hemisphere injury, and the general pattern of linguistic deficits mirrors those observed in spoken language. The right hemisphere likely plays a role in non-linguistic but critical visuospatial functions of sign language; therefore, individuals who are spared from damage to the left hemisphere but suffer injury to the right are at risk for a different set of communication deficits. In this chapter, we review the neurobiology of sign language and patterns of language deficits that follow brain injury in the deaf signing population.


Assuntos
Afasia , Surdez , Humanos , Idioma , Língua de Sinais , Visão Ocular , Percepção Visual
18.
Brain Imaging Behav ; 16(2): 868-877, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34647269

RESUMO

In contrast to the traditional definition of the disorder, many individuals with aphasia exhibit non-linguistic cognitive impairments, including executive control deficits. Classic lesion studies cite frontal lobe damage in executive dysfunction, but more recent lesion symptom-mapping studies in chronic aphasia present mixed results. In this study, we compared executive control abilities of acute stroke survivors with and without aphasia and investigated lesion correlates of linguistic and non-linguistic cognitive tasks. Twenty-nine participants with acute left hemisphere stroke resulting in aphasia (n = 14) or no aphasia (n = 15) completed clinical MRI and testing, including three NIH Toolbox Cognition Batteries (Pattern Comparison Processing Speed, Flanker Inhibitory Control and Attention, and Dimensional Change Card Sort Tests) and the Boston Naming Test. We compared performance between groups using Wilcoxon rank sum tests. We used Least Absolute Shrinkage and Selection Operator Regression to identify neural markers (percent regional damage, hypoperfusion within vascular territories, and total lesion volume) of executive control deficits and anomia. Group performance was comparable on the Pattern Comparison Processing Speed Test, but people with aphasia had poorer standard scores, lower accuracy, and slower response times on the Dimensional Change Card Sort Test than people without aphasia. Damage to extrasylvian regions (dorsolateral prefrontal cortex, intraparietal sulcus) was related to executive control deficits, whereas language network damage (to inferior frontal and superior and posterior middle temporal gyri) was linked to naming impairments. These results suggest people with aphasia can exhibit comorbid executive control impairments linked to damage outside classic language network areas.


Assuntos
Afasia , Acidente Vascular Cerebral , Afasia/diagnóstico por imagem , Afasia/etiologia , Afasia/patologia , Mapeamento Encefálico , Função Executiva/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Sobreviventes
19.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782454

RESUMO

Cholesterol biosynthetic intermediates, such as lanosterol and desmosterol, are emergent immune regulators of macrophages in response to inflammatory stimuli or lipid overloading, respectively. However, the participation of these sterols in regulating macrophage functions in the physiological context of atherosclerosis, an inflammatory disease driven by the accumulation of cholesterol-laden macrophages in the artery wall, has remained elusive. Here, we report that desmosterol, the most abundant cholesterol biosynthetic intermediate in human coronary artery lesions, plays an essential role during atherogenesis, serving as a key molecule integrating cholesterol homeostasis and immune responses in macrophages. Depletion of desmosterol in myeloid cells by overexpression of 3ß-hydroxysterol Δ24-reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol, promotes the progression of atherosclerosis. Single-cell transcriptomics in isolated CD45+CD11b+ cells from atherosclerotic plaques demonstrate that depletion of desmosterol increases interferon responses and attenuates the expression of antiinflammatory macrophage markers. Lipidomic and transcriptomic analysis of in vivo macrophage foam cells demonstrate that desmosterol is a major endogenous liver X receptor (LXR) ligand involved in LXR/retinoid X receptor (RXR) activation and thus macrophage foam cell formation. Decreased desmosterol accumulation in mitochondria promotes macrophage mitochondrial reactive oxygen species production and NLR family pyrin domain containing 3 (NLRP3)-dependent inflammasome activation. Deficiency of NLRP3 or apoptosis-associated speck-like protein containing a CARD (ASC) rescues the increased inflammasome activity and atherogenesis observed in desmosterol-depleted macrophages. Altogether, these findings underscore the critical function of desmosterol in the atherosclerotic plaque to dampen inflammation by integrating with macrophage cholesterol metabolism and inflammatory activation and protecting from disease progression.


Assuntos
Aterosclerose/tratamento farmacológico , Desmosterol/farmacologia , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Ativação de Macrófagos/efeitos dos fármacos , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Colesterol/metabolismo , Vasos Coronários , Células Espumosas/metabolismo , Humanos , Inflamação/metabolismo , Metabolismo dos Lipídeos , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Placa Aterosclerótica/metabolismo , Esteróis/metabolismo
20.
Cell Metab ; 33(11): 2277-2287.e5, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473956

RESUMO

Aging impairs the integrated immunometabolic responses, which have evolved to maintain core body temperature in homeotherms to survive cold stress, infections, and dietary restriction. Adipose tissue inflammation regulates the thermogenic stress response, but how adipose tissue-resident cells instigate thermogenic failure in the aged are unknown. Here, we define alterations in the adipose-resident immune system and identify that type 2 innate lymphoid cells (ILC2s) are lost in aging. Restoration of ILC2 numbers in aged mice to levels seen in adults through IL-33 supplementation failed to rescue old mice from metabolic impairment and increased cold-induced lethality. Transcriptomic analyses revealed intrinsic defects in aged ILC2, and adoptive transfer of adult ILC2s are sufficient to protect old mice against cold. Thus, the functional defects in adipose ILC2s during aging drive thermogenic failure.


Assuntos
Imunidade Inata , Interleucina-33 , Tecido Adiposo , Envelhecimento , Animais , Pulmão , Linfócitos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA