Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(25): 7846-7850, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29905466

RESUMO

Catalyst-transfer polymerization (CTP) has emerged as a useful method for synthesizing conjugated polymers with control over their length, sequence, and end-groups. However, the extent to which the polymerizations are living and chain-growth (or not) is highly catalyst and monomer dependent. Few studies have elucidated the impact of these identities on the stability and reactivity of the key intermediate, especially under polymerization-relevant conditions. We developed herein a simple experiment to identify catalyst stability and ring-walking ability using in situ-generated polymers. The combined results show that the ancillary ligand, metal, and polymer identity all play a crucial role. While each catalyst studied walks efficiently over large distances in poly(thiophene), the trends observed for poly(phenylene) highlight the differing roles of transition metal and ancillary ligand identities. The insights gained herein should be useful for extending CTP to other monomer and copolymer scaffolds.

2.
J Phys Chem A ; 115(38): 10452-60, 2011 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-21793565

RESUMO

The photophysical properties for a series of free-base arylethynyl porphyrins and the corresponding trans-disubstituted tetraphenylporphyrin (H(2)TPP) derivatives lacking arylethynyl functionalities have been studied via electronic absorption and emission spectroscopy in both neutral and diacid forms. Enhanced substituent effects on porphyrin absorption spectra are observed in the arylethynyl porphyrins relative to the H(2)TPP derivatives, owing to the presence of the ethynyl spacer that allows for a coplanar geometry between the porphyrin macrocycle and the appended phenyl substituents. Upon protonation, both series of porphyrins exhibit substantially red shifted absorption and emission spectra and enhanced oscillator strengths, with the magnitude of the spectral shifts being more substantial in the presence of the ethynyl functionalities. Spectral features of the arylethynyl porphyrin bearing p-dimethylamino substituents closely resemble those previously classified as "hyperporphyrin spectra" and are indicative of excited-state charge-transfer character. Protonation of both series of porphyrins results in reduced fluorescence lifetimes and enhanced nonradiative decay rates, and the impact of protonation on these parameters is attenuated in the presence of the arylethynyl functionalities. Our results coupled with previous structural data showing that arylethynyl porphyrins exhibit less structural distortion upon diacid formation relative to H(2)TPP further substantiate the proposal that significant alteration of porphyrin photophysical properties upon diacid formation can be attributed to nonplanar structural distortions induced by protonation.


Assuntos
Porfirinas/química , Estrutura Molecular , Fotoquímica , Porfirinas/síntese química , Teoria Quântica , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA