Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Commun ; 14(1): 6044, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37758709

RESUMO

Menopause is associated with cognitive deficits and brain atrophy, but the brain region and cell-specific mechanisms are not fully understood. Here, we identify a sex hormone by age interaction whereby loss of ovarian hormones in female mice at midlife, but not young age, induced hippocampal-dependent cognitive impairment, dorsal hippocampal atrophy, and astrocyte and microglia activation with synaptic loss. Selective deletion of estrogen receptor beta (ERß) in astrocytes, but not neurons, in gonadally intact female mice induced the same brain effects. RNA sequencing and pathway analyses of gene expression in hippocampal astrocytes from midlife female astrocyte-ERß conditional knock out (cKO) mice revealed Gluconeogenesis I and Glycolysis I as the most differentially expressed pathways. Enolase 1 gene expression was increased in hippocampi from both astrocyte-ERß cKO female mice at midlife and from postmenopausal women. Gain of function studies showed that ERß ligand treatment of midlife female mice reversed dorsal hippocampal neuropathology.


Assuntos
Astrócitos , Receptor beta de Estrogênio , Animais , Feminino , Camundongos , Astrócitos/metabolismo , Encéfalo/metabolismo , Cognição , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Neurônios/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(52): 26779-26787, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31822606

RESUMO

Many autoimmune diseases are more frequent in females than in males in humans and their mouse models, and sex differences in immune responses have been shown. Despite extensive studies of sex hormones, mechanisms underlying these sex differences remain unclear. Here, we focused on sex chromosomes using the "four core genotypes" model in C57BL/6 mice and discovered that the transcriptomes of both autoantigen and anti-CD3/CD28 stimulated CD4+ T lymphocytes showed higher expression of a cluster of 5 X genes when derived from XY as compared to XX mice. We next determined if higher expression of an X gene in XY compared to XX could be due to parent-of-origin differences in DNA methylation of the X chromosome. We found a global increase in DNA methylation on the X chromosome of paternal as compared to maternal origin. Since DNA methylation usually suppresses gene expression, this result was consistent with higher expression of X genes in XY cells because XY cells always express from the maternal X chromosome. In addition, gene expression analysis of F1 hybrid mice from CAST × FVB reciprocal crosses showed preferential gene expression from the maternal X compared to paternal X chromosome, revealing that these parent-of-origin effects are not strain-specific. SJL mice also showed a parent-of-origin effect on DNA methylation and X gene expression; however, which X genes were affected differed from those in C57BL/6. Together, this demonstrates how parent-of-origin differences in DNA methylation of the X chromosome can lead to sex differences in gene expression during immune responses.

3.
J Clin Invest ; 129(9): 3852-3863, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31403472

RESUMO

Multiple sclerosis (MS) is a putative T cell-mediated autoimmune disease. As with many autoimmune diseases, females are more susceptible than males. Sexual dimorphisms may be due to differences in sex hormones, sex chromosomes, or both. Regarding sex chromosome genes, a small percentage of X chromosome genes escape X inactivation and have higher expression in females (XX) compared with males (XY). Here, high-throughput gene expression analysis in CD4+ T cells showed that the top sexually dimorphic gene was Kdm6a, a histone demethylase on the X chromosome. There was higher expression of Kdm6a in females compared with males in humans and mice, and the four core genotypes (FCG) mouse model showed higher expression in XX compared with XY. Deletion of Kdm6a in CD4+ T cells ameliorated clinical disease and reduced neuropathology in the classic CD4+ T cell-mediated autoimmune disease experimental autoimmune encephalomyelitis (EAE). Global transcriptome analysis in CD4+ T cells from EAE mice with a specific deletion of Kdm6a showed upregulation of Th2 and Th1 activation pathways and downregulation of neuroinflammation signaling pathways. Together, these data demonstrate that the X escapee Kdm6a regulates multiple immune response genes, providing a mechanism for sex differences in autoimmune disease susceptibility.


Assuntos
Autoimunidade/imunologia , Linfócitos T CD4-Positivos/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Genes Ligados ao Cromossomo X , Histona Desmetilases/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Genótipo , Histonas/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Inflamação , Masculino , Camundongos , Camundongos Knockout , Esclerose Múltipla/metabolismo , Fenótipo , Células Th1/metabolismo , Células Th2/metabolismo , Transcriptoma
4.
Biophys J ; 116(12): 2314-2330, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31146922

RESUMO

Molecular recognition is critical for the fidelity of signal transduction in biology. Conversely, the disruption of protein-protein interactions can lead to disease. Thus, comprehension of the molecular determinants of specificity is essential for understanding normal biological signaling processes and for the development of precise therapeutics. Although high-resolution structures have provided atomic details of molecular interactions, much less is known about the influence of cooperativity and conformational dynamics. Here, we used the Tiam2 PSD-95/Dlg/ZO-1 (PDZ) domain and a quadruple mutant (QM), engineered by swapping the identity of four residues important for specificity in the Tiam1 PDZ into the Tiam2 PDZ domain, as a model system to investigate the role of cooperativity and dynamics in PDZ ligand specificity. Surprisingly, equilibrium binding experiments found that the ligand specificity of the Tiam2 QM was switched to that of the Tiam1 PDZ. NMR-based studies indicated that Tiam2 QM PDZ, but not other mutants, had extensive microsecond to millisecond motions distributed throughout the entire domain suggesting structural cooperativity between the mutated residues. Thermodynamic analyses revealed energetic cooperativity between residues in distinct specificity subpockets that was dependent upon the identity of the ligand, indicating a context-dependent binding mechanism. Finally, isothermal titration calorimetry experiments showed distinct entropic signatures along the mutational trajectory from the Tiam2 wild-type to the QM PDZ domain. Collectively, our studies provide unique insights into how structure, conformational dynamics, and thermodynamics combine to modulate ligand-binding specificity and have implications for the evolution, regulation, and design of protein-ligand interactions.


Assuntos
Modelos Moleculares , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/química , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Sequência de Aminoácidos , Ligantes , Mutação , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/genética , Termodinâmica
5.
J Neurosci Res ; 95(1-2): 633-643, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27870415

RESUMO

To date, scientific research has often focused on one sex, with assumptions that study of the other sex would yield similar results. However, many diseases affect males and females differently. The sex of a patient can affect the risk for both disease susceptibility and progression. Such differences can be brought to the laboratory bench to be investigated, potentially bringing new treatments back to the clinic. This method of research, known as a "bedside to bench to bedside" approach, has been applied to studying sex differences in multiple sclerosis (MS). Females have greater susceptibly to MS, while males have worse disease progression. These two characteristics of the disease are influenced by the immune system and the nervous system, respectively. Thus, sex differences in each system must be studied. Personalized medicine has been at the forefront of research recently, and studying sex differences in disease fits with this initiative. This review will discuss the known sex differences in MS and highlight how investigating them can lead to new insights and potential treatments for both men and women. © 2016 Wiley Periodicals, Inc.


Assuntos
Esclerose Múltipla , Caracteres Sexuais , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA