RESUMO
The relief of joint pain is one of the main objectives in the clinical management of arthritis. Although significant strides have been made in improving management of rheumatoid and related forms of inflammatory arthritis, there are still major unmet needs for therapies that selectively provide potent, sustained and safe joint pain relief, especially among patients with osteoarthritis (OA), the most common form of arthritis. We have recently developed ProGel-Dex, an N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based thermoresponsive dexamethasone (Dex) prodrug, which forms a hydrogel upon intra-articular administration and provides sustained improvement in pain-related behavior and inflammation in rodent models of arthritis. The focus of the present study was to investigate the impact of ProGel-Dex formulation parameters on its physicochemical properties and in vivo efficacy. The results of this study provide essential knowledge for the future design of ProGel-Dex that can provide more effective, sustained and safe relief of joint pain and inflammation.
Assuntos
Dexametasona , Pró-Fármacos , Dexametasona/uso terapêutico , Dexametasona/administração & dosagem , Dexametasona/farmacologia , Dexametasona/química , Animais , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Masculino , Ratos , Polímeros/química , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Hidrogéis/química , Humanos , Dor Crônica/tratamento farmacológico , CamundongosRESUMO
Osteoarthritis (OA) treatment is limited by the lack of effective nonsurgical interventions to slow disease progression. Here, we examined the contributions of the subchondral bone properties to OA development. We used parathyroid hormone (PTH) to modulate bone mass before OA initiation and alendronate (ALN) to inhibit bone remodeling during OA progression. We examined the spatiotemporal progression of joint damage by combining histopathological and transcriptomic analyses across joint tissues. The additive effect of PTH pretreatment before OA initiation and ALN treatment during OA progression most effectively attenuated load-induced OA pathology. Individually, PTH directly improved cartilage health and slowed the development of cartilage damage, whereas ALN primarily attenuated subchondral bone changes associated with OA progression. Joint damage reflected early transcriptomic changes. With both treatments, the structural changes were associated with early modulation of immunoregulation and immunoresponse pathways that may contribute to disease mechanisms. Overall, our results demonstrate the potential of subchondral bone-modifying therapies to slow the progression of OA.
Assuntos
Cartilagem Articular , Osteoartrite , Hormônio Paratireóideo , Animais , Camundongos , Alendronato/farmacologia , Alendronato/uso terapêutico , Osso e Ossos , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Hormônio Paratireóideo/farmacologia , Hormônio Paratireóideo/uso terapêutico , Remodelação Óssea/efeitos dos fármacos , Suporte de CargaRESUMO
The extensive use of opioids for chronic pain management has contributed significantly to the current opioid epidemic. While many alternative nonopioid analgesics are available, opioids remain the most potent analgesics for moderate to severe pain management. In addition to the implementation of multimodal analgesia, there is a pressing need for the development of more effective and safer opioids. In this study, we developed a thermoresponsive N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based hydromorphone (HMP) prodrug (ProGel-HMP, HMP content = 16.2 wt %, in base form). The aqueous solution of ProGel-HMP was free-flowing at 4 °C but became a hydrogel when the temperature was raised to ≥37 °C, allowing sustained local retention when administered in vivo. When tested in the destabilization of the medial meniscus (DMM) mouse model of osteoarthritis (OA), ProGel-HMP was retained after intra-articular injection in the OA knee joint for at least 2 weeks postinjection, with low extra-articular distribution. ProGel-HMP was not detected in the central nervous system (CNS). A single dose of ProGel-HMP produced rapid and sustained joint pain resolution for greater than 14 days when compared to saline and dose-equivalent HMP controls, likely mediated through peripheral µ-opioid receptors in the knee joint. Systemic analgesia effect was absent in the DMM mice treated with ProGel-HMP, as evident in the lack of difference in tail flick response between the ProGel-HMP-treated mice and the controls (i.e., Healthy, Saline, and Sham). Repeated dosing of ProGel-HMP did not induce tolerance. Collectively, these data support the further development of ProGel-HMP as a potent, safe, long-acting and nonaddictive analgesic for better clinical pain management.
Assuntos
Analgesia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Osteoartrite , Pró-Fármacos , Camundongos , Animais , Hidromorfona , Manejo da Dor , Pró-Fármacos/uso terapêutico , Dor/tratamento farmacológico , Analgésicos Opioides/efeitos adversos , Analgésicos/uso terapêuticoRESUMO
In this study, we aimed to assess the analgesic efficacy of a thermoresponsive polymeric dexamethasone (Dex) prodrug (ProGel-Dex) in a mouse model of osteoarthritis (OA). At 12 weeks post model establishment, the OA mice received a single intra-articular (IA) injection of ProGel-Dex, dose-equivalent Dex, or Saline. Comparing to Saline and Dex controls, ProGel-Dex provided complete and sustained pain relief for >15 weeks according to incapacitance tests. In vivo optical imaging confirmed the continuous presence of ProGel-Dex in joints for 15 weeks post-injection. According to micro-CT analysis, ProGel-Dex treated mice had significantly lower subchondral bone thickness and medial meniscus bone volume than Dex and Saline controls. Except for a transient delay of body weight increase and slightly lower endpoint liver and spleen weights, no other adverse effect was observed after ProGel-Dex treatment. These findings support ProGel-Dex's potential as a potent and safe analgesic candidate for management of OA pain.
Assuntos
Osteoartrite , Pró-Fármacos , Camundongos , Animais , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Osteoartrite/tratamento farmacológico , Artralgia/induzido quimicamente , Artralgia/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêuticoRESUMO
Fibronectin (FN) fragments stimulate catabolic signaling, and, by binding to integrins, they induce chondrocytes to increase the production of matrix metalloproteinases, including MMP-13. In this issue of Science Signaling, Miao et al. reveal that internalization of a FN fragment, but not intact FN, by α5ß1 integrin results in the formation of ROS-producing endosomes (redoxosomes) through which chondrocytes detect and respond to damaged matrix by producing more MMP-13.
Assuntos
Cartilagem , Integrinas , Cartilagem/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Integrina alfa5beta1/metabolismo , Integrinas/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Objective: Clinical evidence suggests that abnormal mechanical forces play a major role in the initiation and progression of osteoarthritis (OA). However, few studies have examined the mechanical environment that leads to disease. Thus, using a mouse tibial loading model, we quantified the cartilage contact stresses and examined the effects of altering tissue material properties on joint stresses during loading. Design: Using a discrete element model (DEA) in conjunction with joint kinematics data from a murine knee joint compression model, the magnitude and distribution of contact stresses in the tibial cartilage during joint loading were quantified at levels ranging from 0 to 9 N in 1 N increments. In addition, a simplified finite element (FEA) contact model was developed to simulate the knee joint, and parametric analyses were conducted to investigate the effects of altering bone and cartilage material properties on joint stresses during compressive loading. Results: As loading increased, the peak contact pressures were sufficient to induce fibrillations on the cartilage surfaces. The computed areas of peak contact pressures correlated with experimentally defined areas of highest cartilage damage. Only alterations in cartilage properties and geometry caused large changes in cartilage contact pressures. However, changes in both bone and cartilage material properties resulted in significant changes in stresses induced in the bone during compressive loading. Conclusions: The level of mechanical stress induced by compressive tibial loading directly correlated with areas of biological change observed in the mouse knee joint. These results, taken together with the parametric analyses, are the first to demonstrate both experimentally and computationally that the tibial loading model is a useful preclinical platform with which to predict and study the effects of modulating bone and/or cartilage properties on attenuating OA progression. Given the direct correlation between computational modeling and experimental results, the effects of tissue-modifying treatments may be predicted prior to in vivo experimentation, allowing for novel therapeutics to be developed.
RESUMO
BACKGROUND: The aim of the study was to examine the relationship among patients' characteristics, intraoperative pathology and pre/post-operative symptoms in a cohort of patients undergoing arthroscopic partial meniscectomy for symptomatic meniscal tears. METHODS: Clinical data were collected (age, sex, body mass index, time to surgery, trauma). Intraoperative cartilage pathology was assessed with Outerbridge score. Meniscal tears were graded with the ISAKOS classification. Synovial inflammation was scored using the Macro-score. Patient symptoms were assessed pre/post-operatively using the KOOS instrument. RESULTS: In the series of 109 patients (median age 47 years), 50% of the meniscal tears were traumatic; 85% of patients showed mild to moderate synovitis; 52 (47.7%) patients had multiple cartilage defects and 31 (28.4%) exhibited a single focal chondral lesion. Outerbridge scores significantly correlated with patient age, BMI and synovial inflammation. There was a correlation between severity of chondral pathology and high-grade synovial hyperplasia. Pre-operative KOOS correlated with BMI, meniscal degenerative changes and symptom duration. Obesity, time to surgery, presence of high-grade synovial hyperplasia and high-grade cartilage lesions were independent predictors of worse post-operative pain and function. CONCLUSION: We demonstrated that pre-operative symptoms and post-operative outcomes correlate with synovitis severity and cartilage pathology, particularly in old and obese patients that underwent arthroscopic partial meniscectomy. Importantly, patients with a degenerative meniscal pattern and with longer time to surgery experienced more severe cartilage damage and, consequentially, pain and dysfunction. These findings are fundamental to identify patients suitable for earlier interventions.
RESUMO
The menisci exert a prominent role in joint stabilization and in the distribution of mechanical loading. Meniscal damage is associated with increased risk of knee OA. The aim of this study was to characterize the synovial membrane and meniscal tissues in patients undergoing arthroscopic partial meniscectomy for meniscal tear and to evaluate association with clinical outcomes. A total of 109 patients were recruited. Demographic and clinical data were collected. Visual Analogic Scale (VAS) measuring pain and Knee injury and Osteoarthritis Outcome Score (KOOS) were recorded at baseline and at 2-years follow-up. Histological and immunohistochemical characterizations were performed on synovial membranes and meniscal tissues. More than half of the patients demonstrated synovial mononuclear cell infiltration and hyperplasia. Synovial fibrosis was present in most of the patients; marked vascularity and CD68 positivity were observed. Inflammation had an impact on both pain and knee symptoms. Patients with synovial inflammation had higher values of pre-operative VAS and inflammation. Higher pre-operative pain was observed in patients with meniscal MMP-13 production. In conclusion, multivariate analysis showed that synovial inflammation was associated with pre-operative total KOOS scores, knee symptoms, and pain. Moreover, meniscal MMP-13 expression was found to be associated with pre-operative pain in multivariate analysis. Thus, targeting inflammation of the synovial membrane and meniscus might reduce clinical symptoms and dysfunction at the time of surgery.
Assuntos
Menisco , Lesões do Menisco Tibial , Humanos , Inflamação/patologia , Metaloproteinase 13 da Matriz , Meniscectomia/efeitos adversos , Meniscos Tibiais/patologia , Meniscos Tibiais/cirurgia , Menisco/cirurgia , Dor/patologia , Lesões do Menisco Tibial/complicações , Lesões do Menisco Tibial/cirurgiaRESUMO
In osteoarthritis (OA), articular chondrocytes display phenotypic and functional changes associated with epigenomic alterations. These changes contribute to the disease progression, which is characterized by dysregulated reparative processes and abnormal extracellular matrix remodeling leading to cartilage degradation. Recent studies using a murine model of posttraumatic OA highlighted the contribution of changes in DNA hydroxymethylation (5hmC) to OA progression. Here, we integrated transcriptomic and epigenomic analyses in cartilage after induction of OA to show that the structural progression of OA is accompanied by early transcriptomic and pronounced DNA methylation (5mC) changes in chondrocytes. These changes accumulate over time and are associated with recapitulation of developmental processes, including cartilage development, chondrocyte hypertrophy, and ossification. Our integrative analyses also uncovered that Lrrc15 is differentially methylated and expressed in OA cartilage, and that it may contribute to the functional and phenotypic alterations of chondrocytes, likely coordinating stress responses and dysregulated extracellular matrix remodeling.
Assuntos
Cartilagem Articular/metabolismo , Metilação de DNA , Epigenoma , Proteínas de Membrana/biossíntese , Osteoartrite/metabolismo , Transcriptoma , Animais , Epigenômica , Perfilação da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Osteoartrite/genéticaRESUMO
Intra-articular (IA) glucocorticoids (GC) are commonly used for clinical management of both osteoarthritis and rheumatoid arthritis, but their efficacy is limited by the relatively short duration of action and associated side effects. To provide sustained efficacy and to improve the safety of GCs, we previously developed a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-based dexamethasone (Dex) prodrug. Serendipitously, we discovered that, by increasing the Dex content of the prodrug to unusually high levels, the aqueous solution of the polymeric prodrug becomes thermoresponsive, transitioning from a free-flowing liquid at 4 °C to a hydrogel at 30 °C or greater. Upon IA injection, the prodrug solution forms a hydrogel (ProGel-Dex) that is retained in the joint for more than 1 month, where it undergoes gradual dissolution, releasing the water-soluble polymeric prodrug. The released prodrug is swiftly internalized and intracellularly processed by phagocytic synoviocytes to release free Dex, resulting in sustained amelioration of joint inflammation and pain in rodent models of inflammatory arthritis and osteoarthritis. The low molecular weight (6.8 kDa) of the ProGel-Dex ensures rapid renal clearance once it escapes the joint, limiting systemic GC exposure and risk of potential off-target side effects. The present study illustrates the translational potential of ProGel-Dex as a potent opioid-sparing, locally delivered adjuvant analgesic for sustained clinical management of arthritis pain and inflammation. Importantly, the observed thermoresponsive properties of the prodrug establishes ProGel as a platform technology for the local delivery of a broad spectrum of therapeutic agents to treat a diverse array of pathological conditions.
Assuntos
Artrite Experimental , Artrite Reumatoide , Pró-Fármacos , Animais , Artrite Experimental/tratamento farmacológico , Dexametasona , DorRESUMO
The surgical model of destabilization of the medial meniscus (DMM) has become a gold standard for studying the onset and progression of post-traumatic osteoarthritis (OA). The DMM model mimics clinical meniscal injury, a known predisposing factor for the development of human OA, and permits the study of structural and biological changes over the course of the disease. In addition, when applied to genetically modified or engineered mouse models, this surgical procedure permits dissection of the relative contribution of a given gene to OA initiation and/or progression. This chapter describes the requirements for the surgical induction of OA in mouse models, and provides guidelines and tools for the subsequent histological, immunohistochemical, and molecular analyses. Methods for the assessment of the contributions of selected genes in genetically modified strains are also provided.
Assuntos
Modelos Animais de Doenças , Meniscos Tibiais/patologia , Modelos Anatômicos , Osteoartrite do Joelho , Lesões do Menisco Tibial , Animais , Progressão da Doença , Masculino , Camundongos , Camundongos Transgênicos , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/patologia , Lesões do Menisco Tibial/genética , Lesões do Menisco Tibial/cirurgiaRESUMO
In the United States, 5-12% of adults have at least one symptom of temporomandibular joint (TMJ) disorders, including TMJ osteoarthritis (TMJ-OA). However, there is no chondroprotective agent that is approved for clinical application. We showed that LOXL2 is elevated in the regenerative response during fracture healing in mice and has a critical role in chondrogenic differentiation. Indeed, LOXL2 is an anabolic effector that attenuates pro-inflammatory signaling in OA cartilage of the TMJ and knee joint, induces chondroprotective and regenerative responses, and attenuates NF-kB signaling. The specific goal of the study was to evaluate if adenoviral delivery of LOXL2 is anabolic to human and mouse TMJ condylar cartilage in vivo and evaluate the protective and anabolic effect on cartilage-specific factors. We employed two different models to assess TMJ-OA. In one model, clinical TMJ-OA cartilage from 5 different samples in TMJ-OA cartilage plugs were implanted subcutaneously in nude mice. Adenovirus LOXL2 -treated implants showed higher mRNA levels of LOXL2, ACAN, and other anabolic genes compared to the adenovirus-Empty-treated implants. Further characterization by RNA-seq analysis showed LOXL2 promotes proteoglycan networks and extracellular matrix in human TMJ-OA cartilage implants in vivo. In order to evaluate if LOXL2-induced functional and sex-linked differences, both male and female four-month-old chondrodysplasia (Cho/+) mice, which develop progressive TMJ-OA due to a point mutation in the Col11a1 gene, were subjected to intraperitoneal injection with Adv-RFP-LOXL2 every 2 weeks for 12 weeks. The data showed that adenovirus delivery of LOXL2 upregulated LOXL2 and aggrecan (Acan), whereas MMP13 expression was slightly downregulated. The fold change expression of Acan and Runx2 induced by Adv-RFP-LOXL2 was higher in females compared to males. Interestingly, Adv-RFP-LOXL2 injection significantly increased Rankl expression in male but there was no change in females, whereas VegfB gene expression was increased in females, but not in males, as compared to those injected with Adv-RFP-Empty in respective groups. Our findings indicate that LOXL2 can induce specifically the expression of Acan and other anabolic genes in two preclinical models in vivo. Further, LOXL2 has beneficial functions in human TMJ-OA cartilage implants and promotes gender-specific anabolic responses in Cho/+ mice with progressive TMJ-OA, suggesting its merit for further study as an anabolic therapy for TMJ-OA.
Assuntos
Agrecanas/metabolismo , Aminoácido Oxirredutases/metabolismo , Cartilagem Articular/patologia , Osteoartrite/patologia , Transtornos da Articulação Temporomandibular/metabolismo , Adenoviridae/genética , Idoso , Aminoácido Oxirredutases/administração & dosagem , Aminoácido Oxirredutases/genética , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/transplante , Condrócitos/metabolismo , Colágeno/genética , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes , Humanos , Masculino , Metabolismo/genética , Camundongos Mutantes , Camundongos Nus , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Caracteres Sexuais , Transtornos da Articulação Temporomandibular/patologiaRESUMO
Kashin-Beck disease (KBD) is an endemic chronic osteochondropathy. The etiology of KBD remains unknown. In this study, we conducted an integrative analysis of genome-wide DNA methylation and mRNA expression profiles between KBD and normal controls to identify novel candidate genes and pathways for KBD. Articular cartilage samples from 17 grade III KBD patients and 17 healthy controls were used in this study. DNA methylation profiling of knee cartilage and mRNA expression profile data were obtained from our previous studies. InCroMAP was performed to integrative analysis of genome-wide DNA methylation profiles and mRNA expression profiles. Gene ontology (GO) enrichment analysis was conducted by online DAVID 6.7. The quantitative real-time polymerase chain reaction (qPCR), Western blot, immunohistochemistry (IHC), and lentiviral vector transfection were used to validate one of the identified pathways. We identified 298 common genes (such as COL4A1, HOXA13, TNFAIP6 and TGFBI), 36 GO terms (including collagen function, skeletal system development, growth factor), and 32 KEGG pathways associated with KBD (including Selenocompound metabolism pathway, PI3K-Akt signaling pathway, and TGF-beta signaling pathway). Our results suggest the dysfunction of many genes and pathways implicated in the pathogenesis of KBD, most importantly, both the integrative analysis and in vitro study in KBD cartilage highlighted the importance of selenocompound metabolism pathway in the pathogenesis of KBD for the first time.
Assuntos
Metilação de DNA , Epigenoma , Doença de Kashin-Bek/genética , RNA Mensageiro/genética , Selênio/metabolismo , Transcriptoma , Adulto , Idoso , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Estudos de Casos e Controles , Células Cultivadas , Epigenômica , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Doença de Kashin-Bek/diagnóstico , Doença de Kashin-Bek/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: Hip osteoarthritis (HOA) is the most common hip disorder and a major cause of disability in the adult population, with an estimated prevalence of end-stage disease and total hip replacement. Thus, the diagnosis, prevention, and treatment of the early stages of the disease in young adults are crucial to reduce the incidence of end-stage HOA. The purpose of this study was to determine whether (1) a relationship among the inflammatory status of labrum and synovium collected from patients with femoroacetabular impingement (FAI) would exist; and (2) to investigate the associations among the histopathological features of joint tissues, the pre-operative symptoms and the post-operative outcomes after arthroscopic surgery. METHODS: Joint tissues from 21 patients undergoing hip arthroscopy for FAI were collected and their histological and immunohistochemical features were correlated with clinical parameters. RESULTS: Synovial mononuclear cell infiltration was observed in 25% of FAI patients, inversely correlated with the hip disability and osteoarthritis outcome score (HOOS) pain and function subscales and with the absolute and relative change in total HOOS. All the labral samples showed some pattern of degeneration and 67% of the samples showed calcium deposits. The total labral score was associated with increased CD68 positive cells in the synovium. The presence of labral calcifications, along with the chondral damage worsened the HOOS post-op symptoms (adjusted R-square = 0.76 p = 0.0001). CONCLUSIONS: Our study reveals a relationship between the histologic labral features, the synovial inflammation, and the cartilage condition at the time of FAI. The presence of labral calcifications, along with the cartilage damage and the synovitis negatively affects the post-operative outcomes in patients with FAI.
Assuntos
Artralgia/cirurgia , Artroplastia de Quadril/métodos , Calcinose/cirurgia , Impacto Femoroacetabular/cirurgia , Articulação do Quadril/cirurgia , Osteoartrite do Quadril/cirurgia , Adulto , Artralgia/patologia , Artroplastia de Quadril/tendências , Calcinose/patologia , Feminino , Impacto Femoroacetabular/patologia , Articulação do Quadril/patologia , Humanos , Masculino , Osteoartrite do Quadril/patologiaRESUMO
BACKGROUND: The goal of this study was to determine if adenovirus-delivered LOXL2 protects against progressive knee osteoarthritis (OA), assess its specific mechanism of action; and determine if the overexpression of LOXL2 in transgenic mice can protect against the development of OA-related cartilage damage and joint disability. METHODS: Four-month-old Cho/+ male and female mice were intraperitoneally injected with either Adv-RFP-LOXL2 or an empty vector twice a month for four months. The proteoglycan levels and the expression of anabolic and catabolic genes were examined by immunostaining and qRT-PCR. The effect of LOXL2 expression on signaling was tested via the pro-inflammatory cytokine IL1ß in the cartilage cell line ATDC5. Finally; the OA by monosodium iodoacetate (MIA) injection was also induced in transgenic mice with systemic overexpression of LOXL2 and examined gene expression and joint function by treadmill tests and assessment of allodynia. RESULTS: The adenovirus treatment upregulated LOXL2; Sox9; Acan and Runx2 expression in both males and females. The Adv-RFP-LOXL2 injection; but not the empty vector injection increased proteoglycan staining and aggrecan expression but reduced MMP13 expression. LOXL2 attenuated IL-1ß-induced phospho-NF-κB/p65 and rescued chondrogenic lineage-related genes in ATDC5 cells; demonstrating one potential protective mechanism. LOXL2 attenuated phospho-NF-κB independent of its enzymatic activity. Finally; LOXL2-overexpressing transgenic mice were protected from MIA-induced OA-related functional changes; including the time and distance traveled on the treadmill and allodynia. CONCLUSION: Our study demonstrates that systemic LOXL2 adenovirus or LOXL2 genetic overexpression in mice can protect against OA. These findings demonstrate the potential for LOXL2 gene therapy for knee-OA clinical treatment in the future.
Assuntos
Envelhecimento/genética , Aminoácido Oxirredutases/genética , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/patologia , Adenoviridae/genética , Aminoácido Oxirredutases/metabolismo , Animais , Artrite Experimental , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Osteoartrite do Joelho/metabolismo , Transdução GenéticaRESUMO
CHUK/IKKα contributes to collagenase-driven extracellular matrix remodeling and chondrocyte hypertrophic differentiation in vitro, in a kinase-independent manner. These processes contribute to osteoarthritis (OA), where chondrocytes experience a phenotypic shift towards hypertrophy concomitant with abnormal matrix remodeling. Here we investigated the contribution of IKKα to OA in vivo. To this end, we induced specific IKKα knockout in adult chondrocytes in AcanCreERT2/+; IKKαf/f mice treated with tamoxifen (cKO). Vehicle-treated littermates were used as wild type controls (WT). At 12 weeks of age, WT and cKO mice were subjected to the destabilization of medial meniscus (DMM) model of post-traumatic OA. The cKO mice showed reduced cartilage degradation and collagenase activity and fewer hypertrophy-like features at 12 weeks after DMM. Interestingly, in spite of the protection from structural articular cartilage damage, the postnatal growth plates of IKKα cKO mice after DMM displayed abnormal architecture and composition associated with increased chondrocyte apoptosis, which were not as evident in the articular chondrocytes of the same animals. Together, our results provide evidence of a novel in vivo functional role for IKKα in cartilage degradation in post-traumatic OA, and also suggest intrinsic, cell-autonomous effects of IKKα in chondrocytes that control chondrocyte phenotype and impact on cell survival, matrix homeostasis, and remodeling.
Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Quinase I-kappa B/genética , Osteoartrite/cirurgia , Animais , Sobrevivência Celular , Condrócitos/patologia , Modelos Animais de Doenças , Homeostase , Humanos , Camundongos KnockoutRESUMO
Adipokines secreted from the infrapatellar fat pad (IPFP), such as adipsin and adiponectin, have been implicated in osteoarthritis pathogenesis. CITED2, a mechanosensitive transcriptional regulator with chondroprotective activity, may modulate their expression. Cited2 haploinsufficient mice (Cited2+/- ) on a high-fat diet (HFD) exhibited increased body weight and increased IPFP area compared to wild-type (WT) mice on an HFD. While an exercise regimen of moderate treadmill running induced the expression of CITED2, as well as PGC-1α, and reduced the expression of adipsin and adiponectin in the IPFP of WT mice on an HFD, Cited2 haploinsufficiency abolished the loading-induced expression of PGC-1α and loading-induced suppression of adipsin and adiponectin. Furthermore, knocking down or knocking out CITED2 in adipose stem cells (ASCs)/preadipocytes derived from the IPFP in vitro led to the increased expression of adipsin and adiponectin and reduced PGC-1α, and abolished the loading-induced suppression of adipsin and adiponectin and loading-induced expression of PGC-1α. Overexpression of PGC-1α in these ASC/preadipocytes reversed the effects caused by CITED2 deficiency. The current data suggest that CITED2 is a critical regulator in physiologic loading-induced chondroprotection in the context of an HFD and PGC-1α is required for the inhibitory effects of CITED2 on the expression of adipokines such as adipsin and adiponectin in the IPFP.
Assuntos
Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Patela/metabolismo , Proteínas Repressoras/fisiologia , Estresse Mecânico , Transativadores/fisiologia , Animais , Dieta Hiperlipídica , Feminino , Haploinsuficiência , Masculino , Camundongos , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Condicionamento Físico Animal , RNA Mensageiro/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismoRESUMO
Osteoarthritis (OA) pathogenesis is mediated largely through the actions of proteolytic enzymes such as matrix metalloproteinase (MMP) 13. The transcriptional regulator CITED2, which suppresses the expression of MMP13 in chondrocytes, is induced by interleukin (IL)-4 in T cells and macrophages, and by moderate mechanical loading in chondrocytes. We tested the hypothesis that CITED2 mediates cross-talk between IL-4 signaling and mechanical loading-induced pathways that result in chondroprotection, at least in part, by downregulating MMP13. IL-4 induced CITED2 gene expression in human chondrocytes in a dose- and time-dependent manner through JAK/STAT signaling. Mechanical loading combined with IL-4 resulted in additive effects on inducing CITED2 expression and downregulating of MMP13 in human chondrocytes in vitro. In vivo, IL-4 gene knockout (KO) mice exhibited reduced basal levels of CITED2 expression in chondrocytes. While moderate treadmill running induced CITED2 expression and reduced MMP13 expression in wild-type mice, these effects were blunted (for CITED2) or abolished (for MMP13) in chondrocytes of IL-4 gene KO mice. Moreover, intra-articular injections of mouse recombinant IL-4 combined with regular cage activity mitigated post-traumatic OA to a greater degree compared to immobilized mice treated with IL-4 alone. These data suggest that using moderate loading to enhance IL-4 may be a potential therapeutic strategy for chondroprotection in OA.
Assuntos
Cartilagem Articular/patologia , Interleucina-4/metabolismo , Proteínas Repressoras/fisiologia , Estresse Mecânico , Transativadores/fisiologia , Animais , Linhagem Celular Transformada , Humanos , Interleucina-4/genética , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
While the dose-response relationship of radiation-induced bystander effect (RIBE) is controversial at low and high linear energy transfer (LET), mechanisms and effectors of cell-to-cell communication stay unclear and highly dependent of cell type. In the present study, we investigated the capacity of chondrocytes in responding to bystander factors released by chondrosarcoma cells irradiated at different doses (0.05 to 8 Gy) with X-rays and C-ions. Following a medium transfer protocol, cell survival, proliferation and DNA damages were quantified in bystander chondrocytes. The bystander factors secreted by chondrosarcoma cells were characterized. A significant and major RIBE response was observed in chondrocyte cells (T/C-28a2) receiving conditioned medium from chondrosarcoma cells (SW1353) irradiated with 0.1 Gy of X-rays and 0.05 Gy of C-ions, resulting in cell survivals of 36% and 62%, respectively. Micronuclei induction in bystander cells was observed from the same low doses. The cell survival results obtained by clonogenic assays were confirmed using impedancemetry. The bystander activity was vanished after a heat treatment or a dilution of the conditioned media. The cytokines which are well known as bystander factors, TNF-α and IL-6, were increased as a function of doses and LET according to an ELISA multiplex analysis. Together, the results demonstrate that irradiated chondrosarcoma cells can communicate stress factors to non-irradiated chondrocytes, inducing a wide and specific bystander response related to both doses and LET.