Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Sci Adv ; 9(31): eadh4057, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540755

RESUMO

Nipah virus (NiV) causes a highly lethal disease in humans who present with acute respiratory or neurological signs. No vaccines against NiV have been approved to date. Here, we report on the clinical impact of a novel NiV-derived nonspreading replicon particle lacking the fusion (F) protein gene (NiVΔF) as a vaccine in three small animal models of disease. A broad antibody response was detected that included immunoglobulin G (IgG) and IgA subtypes with demonstrable Fc-mediated effector function targeting multiple viral antigens. Single-dose intranasal vaccination up to 3 days before challenge prevented clinical signs and reduced virus levels in hamsters and immunocompromised mice; decreases were seen in tissues and mucosal secretions, critically decreasing potential for virus transmission. This virus replicon particle system provides a vital tool to the field and demonstrates utility as a highly efficacious and safe vaccine candidate that can be administered parenterally or mucosally to protect against lethal Nipah disease.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Vacinas Virais , Cricetinae , Humanos , Animais , Camundongos , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/genética , Vacinação , Modelos Animais de Doenças , Vírus Nipah/genética , Replicon
2.
PLoS Pathog ; 18(10): e1010662, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215331

RESUMO

We have recently shown that the replication of rhinovirus, poliovirus and foot-and-mouth disease virus requires the co-translational N-myristoylation of viral proteins by human host cell N-myristoyltransferases (NMTs), and is inhibited by treatment with IMP-1088, an ultrapotent small molecule NMT inhibitor. Here, we examine the importance of N-myristoylation during vaccinia virus (VACV) infection in primate cells and demonstrate the anti-poxviral effects of IMP-1088. N-myristoylated proteins from VACV and the host were metabolically labelled with myristic acid alkyne during infection using quantitative chemical proteomics. We identified VACV proteins A16, G9 and L1 to be N-myristoylated. Treatment with NMT inhibitor IMP-1088 potently abrogated VACV infection, while VACV gene expression, DNA replication, morphogenesis and EV formation remained unaffected. Importantly, we observed that loss of N-myristoylation resulted in greatly reduced infectivity of assembled mature virus particles, characterized by significantly reduced host cell entry and a decline in membrane fusion activity of progeny virus. While the N-myristoylation of VACV entry proteins L1, A16 and G9 was inhibited by IMP-1088, mutational and genetic studies demonstrated that the N-myristoylation of L1 was the most critical for VACV entry. Given the significant genetic identity between VACV, monkeypox virus and variola virus L1 homologs, our data provides a basis for further investigating the role of N-myristoylation in poxviral infections as well as the potential of selective NMT inhibitors like IMP-1088 as broad-spectrum poxvirus inhibitors.


Assuntos
Vaccinia virus , Vacínia , Animais , Humanos , Alcinos , Ácido Mirístico/metabolismo , Vacínia/metabolismo , Vaccinia virus/genética , Proteínas Virais/metabolismo , Vírion/metabolismo , Internalização do Vírus
3.
J Med Entomol ; 59(4): 1404-1412, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35468215

RESUMO

The western black-legged tick (Ixodes pacificus) is the most frequently identified human-biting tick species in the western United States and the principal vector of at least three recognized bacterial pathogens of humans. A potentially pathogenic Rickettsia species, first described in 1978 and recently characterized as a novel transitional group agent designated as Rickettsia tillamookensis, also exists among populations of I. pacificus, although the distribution and frequency of this agent are poorly known. We evaluated DNA extracts from 348 host-seeking I. pacificus nymphs collected from 9 locations in five California counties, and from 916 I. pacificus adults collected from 24 locations in 13 counties, by using a real-time PCR designed specifically to detect DNA of R. tillamookensis. DNA of R. tillamookensis was detected in 10 (2.9%) nymphs (95% CI: 1.6-5.2%) and 17 (1.9%) adults (95% CI: 1.2-3.0%) from 11 counties of northern California. Although site-specific infection rates varied greatly, frequencies of infection remained consistently low when aggregated by stage, sex, habitat type, or geographical region. Four novel isolates of R. tillamookensis were cultivated in Vero E6 cells from individual adult ticks collected from Alameda, Nevada, and Yolo counties. Four historical isolates, serotyped previously as 'Tillamook-like' strains over 40 yr ago, were revived from long-term storage in liquid nitrogen and confirmed subsequently by molecular methods as isolates of R. tillamookensis. The potential public health impact of R. tillamookensis requires further investigation.


Assuntos
Ixodes , Ixodidae , Rickettsia , Rickettsiaceae , Animais , California , Humanos , Ixodes/microbiologia , Ninfa/microbiologia , Rickettsiales
4.
Microsc Res Tech ; 85(7): 2740-2747, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35373872

RESUMO

The identification of viral particles within a tissue specimen requires specific knowledge of viral ultrastructure and replication, as well as a thorough familiarity with normal subcellular organelles. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has underscored how challenging the task of identifying coronavirus by electron microscopy (EM) can be. Numerous articles have been published mischaracterizing common subcellular structures, including clathrin- or coatomer- coated vesicles, multivesicular bodies, and rough endoplasmic reticulum, as coronavirus particles in SARS-CoV-2 positive patient tissue specimens. To counter these misinterpretations, we describe the morphological features of coronaviruses that should be used to differentiate coronavirus particles from subcellular structures. Further, as many of the misidentifications of coronavirus particles have stemmed from attempts to attribute tissue damage to direct infection by SARS-CoV-2, we review articles describing ultrastructural changes observed in specimens from SARS-CoV-2-infected individuals that do not necessarily provide EM evidence of direct viral infection. Ultrastructural changes have been observed in respiratory, cardiac, kidney, and intestinal tissues, highlighting the widespread effects that SARS-CoV-2 infection may have on the body, whether through direct viral infection or mediated by SARS-CoV-2 infection-induced inflammatory and immune processes. HIGHLIGHTS: The identification of coronavirus particles in SARS-CoV-2 positive tissues continues to be a challenging task. This review provides examples of coronavirus ultrastructure to aid in the differentiation of the virus from common cellular structures.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Microscopia Eletrônica , Pandemias
5.
mBio ; 13(2): e0298321, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35285699

RESUMO

Individuals with metabolic dysregulation of cellular glycosylation often experience severe influenza disease, with a poor immune response to the virus and low vaccine efficacy. Here, we investigate the consequences of aberrant cellular glycosylation for the glycome and the biology of influenza virus. We transiently induced aberrant N-linked glycosylation in cultured cells with an oligosaccharyltransferase inhibitor, NGI-1. Cells treated with NGI-1 produced morphologically unaltered viable influenza virus with sequence-neutral glycosylation changes (primarily reduced site occupancy) in the hemagglutinin and neuraminidase proteins. Hemagglutinin with reduced glycan occupancy required a higher concentration of surfactant protein D (an important innate immunity respiratory tract collectin) for inhibition compared to that with normal glycan occupancy. Immunization of mice with NGI-1-treated virus significantly reduced antihemagglutinin and antineuraminidase titers of total serum antibody and reduced hemagglutinin protective antibody responses. Our data suggest that aberrant cellular glycosylation may increase the risk of severe influenza as a result of the increased ability of glycome-modified influenza viruses to evade the immune response. IMPORTANCE People with disorders such as cancer, autoimmune disease, diabetes, or obesity often have metabolic dysregulation of cellular glycosylation and also have more severe influenza disease, a reduced immune response to the virus, and reduced vaccine efficacy. Since influenza viruses that infect such people do not show consistent genomic variations, it is generally assumed that the altered biology is mainly related to host factors. However, since host cells are responsible for glycosylation of influenza virus hemagglutinin and neuraminidase, and glycosylation is important for interactions of these proteins with the immune system, the viruses may have functional differences that are not reflected by their genomic sequence. Here, we show that imbalanced cellular glycosylation can modify the viral glycome without genomic changes, leading to reduced innate and adaptive host immune responses to infection. Our findings link metabolic dysregulation of host glycosylation to increased risk of severe influenza and reduced influenza virus vaccine efficacy.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Glicosilação , Hemaglutininas/genética , Humanos , Imunidade Inata , Camundongos , Neuraminidase/genética , Polissacarídeos
6.
Emerg Infect Dis ; 28(3): 510-517, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35138244

RESUMO

Severe coronavirus disease in neonates is rare. We analyzed clinical, laboratory, and autopsy findings from a neonate in the United States who was delivered at 25 weeks of gestation and died 4 days after birth; the mother had asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and preeclampsia. We observed severe diffuse alveolar damage and localized SARS-CoV-2 by immunohistochemistry, in situ hybridization, and electron microscopy of the lungs of the neonate. We localized SARS-CoV-2 RNA in neonatal heart and liver vascular endothelium by using in situ hybridization and detected SARS-CoV-2 RNA in neonatal and placental tissues by using reverse transcription PCR. Subgenomic reverse transcription PCR suggested viral replication in lung/airway, heart, and liver. These findings indicate that in utero SARS-CoV-2 transmission contributed to this neonatal death.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Autopsia , Feminino , Humanos , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas , Pulmão , Placenta , Gravidez , RNA Viral/genética , SARS-CoV-2
7.
Clin Infect Dis ; 74(10): 1821-1830, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34463715

RESUMO

BACKGROUND: Lassa fever is a zoonotic, acute viral illness first identified in Nigeria in 1969. An estimate shows that the "at risk" seronegative population (in Sierra Leone, Guinea, and Nigeria) may be as high as 59 million, with an annual incidence of all illnesses of 3 million, and fatalities up to 67 000, demonstrating the serious impact of the disease on the region and global health. METHODS: Histopathologic evaluation, immunohistochemical assay, and electron microscopic examination were performed on postmortem tissue samples from 12 confirmed Lassa fever cases. RESULTS: Lassa fever virus antigens and viral particles were observed in multiple organ systems and cells, including cells in the mononuclear phagocytic system and other specialized cells where it had not been described previously. CONCLUSIONS: The immunolocalization of Lassa fever virus antigens in fatal cases provides novel insightful information with clinical and pathogenetic implications. The extensive involvement of the mononuclear phagocytic system, including tissue macrophages and endothelial cells, suggests participation of inflammatory mediators from this lineage with the resulting vascular dilatation and increasing permeability. Other findings indicate the pathogenesis of Lassa fever is multifactorial and additional studies are needed.


Assuntos
Febre Lassa , Viroses , Células Endoteliais , Humanos , Incidência , Febre Lassa/epidemiologia , Vírus Lassa
8.
PLoS Pathog ; 17(9): e1009633, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34547055

RESUMO

Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.


Assuntos
Modelos Animais de Doenças , Varíola , Animais , Humanos , Camundongos , Vírus da Varíola
11.
Emerg Infect Dis ; 27(4): 1023-1031, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33600302

RESUMO

Efforts to combat the coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have placed a renewed focus on the use of transmission electron microscopy for identifying coronavirus in tissues. In attempts to attribute pathology of COVID-19 patients directly to tissue damage caused by SARS-CoV-2, investigators have inaccurately reported subcellular structures, including coated vesicles, multivesicular bodies, and vesiculating rough endoplasmic reticulum, as coronavirus particles. We describe morphologic features of coronavirus that distinguish it from subcellular structures, including particle size range (60-140 nm), intracellular particle location within membrane-bound vacuoles, and a nucleocapsid appearing in cross section as dense dots (6-12 nm) within the particles. In addition, although the characteristic spikes of coronaviruses may be visible on the virus surface, especially on extracellular particles, they are less evident in thin sections than in negative stain preparations.


Assuntos
COVID-19 , Estruturas Celulares , SARS-CoV-2 , Biópsia/métodos , COVID-19/patologia , COVID-19/virologia , Estruturas Celulares/classificação , Estruturas Celulares/ultraestrutura , Humanos , Microscopia Eletrônica/métodos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/ultraestrutura
12.
Kidney Int ; 99(4): 824-827, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33493525

RESUMO

This guidance provides clear, concise strategies for identifying coronaviruses by transmission electron microscopy of ultrathin sections of tissues or infected tissue cultures. These include a description of virus morphology as well as cell organelles that can resemble viruses. Biochemical testing and caveats are discussed. Numerous references provide information for documentation and further study.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , Microscopia Eletrônica de Transmissão , SARS-CoV-2/ultraestrutura , Benchmarking , COVID-19/virologia , Humanos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
15.
Emerg Infect Dis ; 26(9): 2005-2015, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32437316

RESUMO

An ongoing pandemic of coronavirus disease (COVID-19) is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Characterization of the histopathology and cellular localization of SARS-CoV-2 in the tissues of patients with fatal COVID-19 is critical to further understand its pathogenesis and transmission and for public health prevention measures. We report clinicopathologic, immunohistochemical, and electron microscopic findings in tissues from 8 fatal laboratory-confirmed cases of SARS-CoV-2 infection in the United States. All cases except 1 were in residents of long-term care facilities. In these patients, SARS-CoV-2 infected epithelium of the upper and lower airways with diffuse alveolar damage as the predominant pulmonary pathology. SARS-CoV-2 was detectable by immunohistochemistry and electron microscopy in conducting airways, pneumocytes, alveolar macrophages, and a hilar lymph node but was not identified in other extrapulmonary tissues. Respiratory viral co-infections were identified in 3 cases; 3 cases had evidence of bacterial co-infection.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Idoso , COVID-19 , Infecções por Coronavirus/virologia , Feminino , Humanos , Imuno-Histoquímica , Pulmão/patologia , Pulmão/virologia , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Estados Unidos/epidemiologia
16.
J Cutan Pathol ; 47(7): 659-663, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32125011

RESUMO

Microsporidia are a group of obligate intracellular parasites that naturally infect domestic and wild animals. Human microsporidiosis is an increasingly recognized multisystem opportunistic infection. The clinical manifestations are diverse with diarrhea being the most common presenting symptom. We present a 52-year-old woman with a history of amyopathic dermatomyositis complicated by interstitial lung disease managed with mycophenolate mofetil and hydroxychloroquine who presented with a 7-month history of recurrent subcutaneous nodules as well as intermittent diarrhea and chronic sinusitis. A punch biopsy showed superficial and deep lymphocytic and granulomatous dermatitis with focal necrosis. Tissue stains for microorganisms revealed oval 1 to 3 µm spores within the necrotic areas in multiple tissue stains. Additional studies at the Centers for Disease Control and Prevention confirmed cutaneous microsporidiosis. This case is one of very few confirmed examples of cutaneous microsporidiosis reported in the literature.


Assuntos
Dermatomicoses/imunologia , Hospedeiro Imunocomprometido , Microsporidiose/imunologia , Dermatomiosite/complicações , Dermatomiosite/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Hidroxicloroquina/uso terapêutico , Doenças Pulmonares Intersticiais/etiologia , Pessoa de Meia-Idade , Ácido Micofenólico/uso terapêutico
17.
Vaccine X ; 2: 100031, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31384746

RESUMO

The recent reduction of live attenuated influenza vaccine (LAIV) effectiveness in multivalent formulations was particularly associated with the A(H1N1)pdm09 component. In the 2017 the WHO vaccine composition committee changed its recommendations for the A(H1N1)pdm09 component to include an A/Michigan/45/2015-like virus. We evaluated effectiveness and quality of newly developed and previous A(H1N1)pdm09 LAIV reassortants through assessment of their thermal and pH stability, receptor binding specificity and replication fitness in primary human airway epithelial cells of nasal origin (hAECN). Our analysis showed that LAIV expressed hemagglutinin (HA) and neuraminidase (NA) from an A/Michigan/45/2015-like strain A/New York/61/2015 (A/New York/61/2015-CDC-LV16A, NY-LV16A), exhibit higher thermal and pH stability compared to the previous vaccine candidates expressing HA and NA from A/California/07/2009 and A/Bolivia/559/2013 (A17/Cal09 and A17/Bol13). Reassortants A/South Africa/3626/2013-CDC-LV14A (SA-LV14A) and NY-LV16A showed preferential binding to α2,6 sialic acid (SA) receptors and replicated at higher titers and more extensively in hAECN compared to A17/Cal09 and A17/Bol13, which had an α2,3 SA receptor binding preference. Our data analysis supports selection of A/New York/61/2015-CDC-LV16A for LAIV formulation and the introduction of new assays for LAIV characterization.

18.
J Infect Dis ; 220(8): 1281-1289, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31152662

RESUMO

Lassa fever is a frequently severe human disease that is endemic to several countries in West Africa. To date, no licensed vaccines are available to prevent Lassa virus (LASV) infection, even though Lassa fever is thought to be an important disease contributing to mortality and both acute and chronic morbidity. We have previously described a vaccine candidate composed of single-cycle LASV replicon particles (VRPs) and a stable cell line for their production. Here, we refine the genetic composition of the VRPs and demonstrate the ability to reproducibly purify them with high yields. Studies in the guinea pig model confirm efficacy of the vaccine candidate, demonstrate that single-cycle replication is necessary for complete protection by the VRP vaccine, and show that postexposure vaccination can confer protection from lethal outcome.


Assuntos
Febre Lassa/prevenção & controle , Vírus Lassa/imunologia , Profilaxia Pós-Exposição/métodos , Vacinação/métodos , Vacinas Virais/administração & dosagem , Células A549 , África Ocidental , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Cobaias , Humanos , Esquemas de Imunização , Febre Lassa/virologia , Vírus Lassa/genética , Vírus Lassa/isolamento & purificação , Masculino , Replicon/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Células Vero , Vacinas Virais/genética , Vacinas Virais/imunologia
19.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30971476

RESUMO

In 2011, ticks were collected from livestock following an outbreak of Crimean Congo hemorrhagic fever (CCHF) in Gujarat state, India. CCHF-negative Hyalomma anatolicum tick pools were passaged for virus isolation, and two virus isolates were obtained, designated Karyana virus (KARYV) and Kundal virus (KUNDV), respectively. Traditional reverse transcription-PCR (RT-PCR) identification of known viruses was unsuccessful, but a next-generation sequencing (NGS) approach identified KARYV and KUNDV as viruses in the Reoviridae family, Orbivirus and Coltivirus genera, respectively. Viral genomes were de novo assembled, yielding 10 complete segments of KARYV and 12 nearly complete segments of KUNDV. The VP1 gene of KARYV shared a most recent common ancestor with Wad Medani virus (WMV), strain Ar495, and based on nucleotide identity we demonstrate that it is a novel WMV strain. The VP1 segment of KUNDV shares a common ancestor with Colorado tick fever virus, Eyach virus, Tai Forest reovirus, and Tarumizu tick virus from the Coltivirus genus. Based on VP1, VP6, VP7, and VP12 nucleotide and amino acid identities, KUNDV is proposed to be a new species of Coltivirus Electron microscopy supported the classification of KARYV and KUNDV as reoviruses and identified replication morphology consistent with other orbi- and coltiviruses. The identification of novel tick-borne viruses carried by the CCHF vector is an important step in the characterization of their potential role in human and animal pathogenesis.IMPORTANCE Ticks and mosquitoes, as well Culicoides, can transmit viruses in the Reoviridae family. With the help of next-generation sequencing (NGS), previously unreported reoviruses such as equine encephalosis virus, Wad Medani virus (WMV), Kammavanpettai virus (KVPTV), and, with this report, KARYV and KUNDV have been discovered and characterized in India. The isolation of KUNDV and KARYV from Hyalomma anatolicum, which is a known vector for zoonotic pathogens, such as Crimean Congo hemorrhagic fever virus, Babesia, Theileria, and Anaplasma species, identifies arboviruses with the potential to transmit to humans. Characterization of KUNDV and KARYV isolated from Hyalomma ticks is critical for the development of specific serological and molecular assays that can be used to determine the association of these viruses with disease in humans and livestock.


Assuntos
Coltivirus/classificação , Coltivirus/isolamento & purificação , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Febre Hemorrágica da Crimeia/complicações , Orbivirus/classificação , Orbivirus/isolamento & purificação , Filogenia , Carrapatos/virologia , Animais , Chlorocebus aethiops , Coltivirus/genética , Culicidae/virologia , Genoma Viral , Vírus da Febre Hemorrágica da Crimeia-Congo/classificação , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Índia , Mosquitos Vetores/virologia , Orbivirus/genética , Reoviridae/classificação , Reoviridae/genética , Reoviridae/isolamento & purificação , Reoviridae/ultraestrutura , Células Vero , Ensaio de Placa Viral , Proteínas Virais/genética
20.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30814288

RESUMO

Ferrets represent an invaluable animal model to study influenza virus pathogenesis and transmission. To further characterize this model, we developed a differentiated primary ferret nasal epithelial cell (FNEC) culture model for investigation of influenza A virus infection and virus-host interactions. This well-differentiated culture consists of various cell types, a mucociliary clearance system, and tight junctions, representing the nasal ciliated pseudostratified respiratory epithelium. Both α2,6-linked and α2,3-linked sialic acid (SA) receptors, which preferentially bind the hemagglutinin (HA) of human and avian influenza viruses, respectively, were detected on the apical surface of the culture with different cellular tropisms. In accordance with the distribution of SA receptors, we observed that a pre-2009 seasonal A(H1N1) virus infected both ciliated and nonciliated cells, whereas a highly pathogenic avian influenza (HPAI) A(H5N1) virus primarily infected nonciliated cells. Transmission electron microscopy revealed that virions were released from or associated with the apical membranes of ciliated, nonciliated, and mucin-secretory goblet cells. Upon infection, the HPAI A(H5N1) virus replicated to titers higher than those of the human A(H1N1) virus at 37°C; however, replication of the A(H5N1) virus was significantly attenuated at 33°C. Furthermore, we found that infection with the A(H5N1) virus induced higher expression levels of immune mediator genes and resulted in more cell damage/loss than with the human A(H1N1) virus. This primary differentiated FNEC culture model, recapitulating the structure of the nasal epithelium, provides a useful model to bridge in vivo and in vitro studies of cellular tropism, infectivity, and pathogenesis of influenza viruses during the initial stages of infection.IMPORTANCE Although ferrets serve as an important model of influenza virus infection, much remains unknown about virus-host interactions in this species at the cellular level. The development of differentiated primary cultures of ferret nasal epithelial cells is an important step toward understanding cellular tropism and the mechanisms of influenza virus infection and replication in the airway milieu of this model. Using lectin staining and microscopy techniques, we characterized the sialic acid receptor distribution and the cellular composition of the culture model. We then evaluated the replication of and immune response to human and avian influenza viruses at relevant physiological temperatures. Our findings offer significant insight into this first line of defense against influenza virus infection and provide a model for the evaluation of emerging influenza viruses in a well-controlled in vitro environmental setting.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/genética , Tropismo Viral/genética , Animais , Brônquios/virologia , Técnicas de Cultura de Células/métodos , Cílios/virologia , Modelos Animais de Doenças , Células Epiteliais/virologia , Furões/virologia , Células Caliciformes/metabolismo , Células Caliciformes/virologia , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H1N1/patogenicidade , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Mucosa Nasal/metabolismo , Mucosa Nasal/virologia , Cultura Primária de Células , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Mucosa Respiratória/virologia , Traqueia/virologia , Viroses/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA