Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 26(2): 105946, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36818294

RESUMO

Snakebite affects more than 1.8 million people annually. Factors explaining snakebite variability include farmers' behaviors, snake ecology and climate. One unstudied issue is how farmers' adaptation to novel climates affect their health. Here we examined potential impacts of adaptation on snakebite using individual-based simulations, focusing on strategies meant to counteract major crop yield decline because of changing rainfall in Sri Lanka. For rubber cropping, adaptation led to a 33% increase in snakebite incidence per farmer work hour because of work during risky months, but a 17% decrease in total annual snakebites because of decreased labor in plantations overall. Rice farming adaptation decreased snakebites by 16%, because of shifting labor towards safer months, whereas tea adaptation led to a general increase. These results indicate that adaptation could have both a positive and negative effect, potentially intensified by ENSO. Our research highlights the need for assessing adaptation strategies for potential health maladaptations.

2.
Toxicon X ; 9-10: 100069, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34258577

RESUMO

Snakebite envenoming is a set of intoxication diseases that disproportionately affect people of poor socioeconomic backgrounds in tropical countries. As it is highly dependent on the environment its burden is expected to shift spatially with global anthropogenic environmental (climate, land use) and demographic change. The mechanisms underlying the changes to snakebite epidemiology are related to factors of snakes and humans. The distribution and abundance of snakes are expected to change with global warming via their thermal tolerance, while rainfall may affect the timing of key activities like feeding and reproduction. Human population growth is the primary cause of land-use change, which may impact snakes at smaller spatial scales than climate via habitat and biodiversity loss (e.g. prey availability). Human populations, on the other hand, could experience novel patterns and morbidity of snakebite envenoming, both as a result of snake responses to environmental change and due to the development of agricultural adaptations to climate change, socioeconomic and cultural changes, development and availability of better antivenoms, personal protective equipment, and mechanization of agriculture that mediate risk of encounters with snakes and their outcomes. The likely global effects of environmental and demographic change are thus context-dependent and could encompass both increasing and or snakebite burden (incidence, number of cases or morbidity), exposing new populations to snakes in temperate areas due to "tropicalization", or by land use change-induced snake biodiversity loss, respectively. Tackling global change requires drastic measures to ensure large-scale ecosystem functionality. However, as ecosystems represent the main source of venomous snakes their conservation should be accompanied by comprehensive public health campaigns. The challenges associated with the joint efforts of biodiversity conservation and public health professionals should be considered in the global sustainability agenda in a wider context that applies to neglected tropical and zoonotic and emerging diseases.

3.
PLoS Negl Trop Dis ; 15(1): e0009047, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481802

RESUMO

Snakebite causes more than 1.8 million envenoming cases annually and is a major cause of death in the tropics especially for poor farmers. While both social and ecological factors influence the chance encounter between snakes and people, the spatio-temporal processes underlying snakebites remain poorly explored. Previous research has focused on statistical correlates between snakebites and ecological, sociological, or environmental factors, but the human and snake behavioral patterns that drive the spatio-temporal process have not yet been integrated into a single model. Here we use a bottom-up simulation approach using agent-based modelling (ABM) parameterized with datasets from Sri Lanka, a snakebite hotspot, to characterise the mechanisms of snakebite and identify risk factors. Spatio-temporal dynamics of snakebite risks are examined through the model incorporating six snake species and three farmer types (rice, tea, and rubber). We find that snakebites are mainly climatically driven, but the risks also depend on farmer types due to working schedules as well as species present in landscapes. Snake species are differentiated by both distribution and by habitat preference, and farmers are differentiated by working patterns that are climatically driven, and the combination of these factors leads to unique encounter rates for different landcover types as well as locations. Validation using epidemiological studies demonstrated that our model can explain observed patterns, including temporal patterns of snakebite incidence, and relative contribution of bites by each snake species. Our predictions can be used to generate hypotheses and inform future studies and decision makers. Additionally, our model is transferable to other locations with high snakebite burden as well.


Assuntos
Ecologia , Mordeduras de Serpentes/epidemiologia , Análise de Sistemas , Animais , Tomada de Decisões , Ecossistema , Humanos , Incidência , Serpentes , Sri Lanka/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA