Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Foods ; 13(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38790783

RESUMO

This study aimed to measure and compare the osmolality and tonicity of isotonic beverages that can be bought on the Slovenian market. The main goal was to examine how good is the agreement between the measured osmolalities of the beverages and the requirements for isotonic beverages set up by EFSA. Osmolalities were measured with an osmometer using the freezing point depression method. Afterwards, two complementary methods for the observation of tonicity were developed. Erythrocytes were exposed to standard NaCl solutions of different osmolalities to observe their influence on the volume and shape of cells following the turbidity of the solution and the morphology of erythrocytes. These two methods enabled us to determine whether standard solutions were hypo-, iso-, or hypertonic. In this way, we found that the osmolality of 12 out of the 18 investigated isotonic beverages was in the range of 270-330 mOsm/kg, as required by EFSA. However, six samples did not meet this criterion and should therefore not have the label "isotonic" or be described as such. The measurements of turbidity of solutions indicated that most isotonic beverages exhibit a lower tonicity than standard NaCl solutions of identical osmolality. However, examination of the erythrocytes in isotonic beverages showed that the measurements were additionally complicated by the low pH values of these beverages. Finally, by demonstrating how different components of isotonic beverages pass through the erythrocyte membranes, we found that even isoosmolal beverages are often not isotonic, as the concentration of actively transported sugars in these beverages is relatively high.

2.
Life Sci ; 326: 121822, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257580

RESUMO

AIMS: Understanding of the molecular mechanisms of anti-TNFα therapy non-response and reliable biomarkers are essential for personalized medicine in Crohn's disease (CD) patients. Using RNA-seq data adjusted for deconvoluted fractions of peripheral blood cells, we recently described MMD gene, coding for a monocyte to macrophage differentiation factor, as a biomarker of adalimumab (anti-TNFα) therapy response in CD. The results also suggest that cell subtype-specific biomarkers may be superior to those measured in bulk peripheral blood. Here, we used functional cell model to further investigate the role of the monocyte to macrophage differentiation in adalimumab treatment response and evaluate monocyte/macrophage specific expression of the inflammatory cytokines as potential biomarkers for (non)response to adalimumab in CD patients. MAIN METHODS: The peripheral monocytes of CD patients responsive and non-responsive to adalimumab were isolated, differentiated into macrophages, and exposed to inflammation and concurrent adalimumab therapy in vitro. The results were correlated to the clinical response of the donor patients. KEY FINDINGS: Correlation is shown of the expression of two macrophage differentiation related genes- CD68 and MMD, with the expression of the inflammatory cytokines TNF, IL1B, IL6 and CXCL8. Monocytes and in vitro differentiated macrophages of adalimumab non-responders express more inflammatory cytokines than those of responders. The biggest difference was in the IL1B expression. Additionally, IL1B expression in the in vitro differentiated macrophages of CD patients correlates negatively with their clinical response to adalimumab. SIGNIFICANCE: We propose the IL1B expression in the macrophages as a possible biomarker for adalimumab response in CD patients.


Assuntos
Doença de Crohn , Humanos , Adalimumab/farmacologia , Adalimumab/uso terapêutico , Doença de Crohn/tratamento farmacológico , Leucócitos Mononucleares , Citocinas , Biomarcadores , Interleucina-1beta
3.
Bioengineering (Basel) ; 9(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35447697

RESUMO

BACKGROUND: Degenerative disc disease is a progressive and chronic disorder with many open questions regarding its pathomorphological mechanisms. In related studies, in vitro organ culture systems are becoming increasingly essential as a replacement option for laboratory animals. Live disc cells are highly appealing to study the possible mechanisms of intervertebral disc (IVD) degeneration. To study the degenerative processes of the endplate chondrocytes in vitro, we established a relatively quick and easy protocol for isolating human chondrocytes from the vertebral endplates. METHODS: The fragments of human lumbar endplates following lumbar fusion were collected, cut, ground and partially digested with collagenase I in Advanced DMEM/F12 with 5% foetal bovine serum. The sediment was harvested, and cells were seeded in suspension, supplemented with special media containing high nutrient levels. Morphology was determined with phalloidin staining and the characterisation for collagen I, collagen II and aggrecan with immunostaining. RESULTS: The isolated cells retained viability in appropriate laboratory conditions and proliferated quickly. The confluent culture was obtained after 14 days. Six to 8 h after seeding, attachments were observed, and proliferation of the isolated cells followed after 12 h. The cartilaginous endplate chondrocytes were stable with a viability of up to 95%. Pheno- and geno-typic analysis showed chondrocyte-specific expression, which decreased with passages. CONCLUSIONS: The reported cell isolation process is simple, economical and quick, allowing establishment of a viable long-term cell culture. The availability of a vertebral endplate cell model will permit the study of cell properties, biochemical aspects, the potential of therapeutic candidates for the treatment of disc degeneration, and toxicology studies in a well-controlled environment.

4.
Cancers (Basel) ; 14(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35267651

RESUMO

Metformin and 2-deoxy-D-glucose (2DG) exhibit multiple metabolic and immunomodulatory anti-cancer effects, such as suppressed proliferation or PD-L1 expression. Their combination or 2DG alone induce triple-negative breast cancer (TNBC) cell detachment, but their effects on mitochondria, crucial for anchorage-independent growth and metastasis formation, have not yet been evaluated. In the present study, we explored the effects of metformin, 2DG and their combination (metformin + 2DG) on TNBC cell mitochondria in vitro. Metformin + 2DG increased mitochondrial mass in TNBC cells. This was associated with an increased size but not number of morphologically normal mitochondria and driven by the induction of mitochondrial biogenesis rather than suppressed mitophagy. 2DG and metformin + 2DG strongly induced the unfolded protein response by inhibiting protein N-glycosylation. Together with adequate energy stress, this was one of the possible triggers of mitochondrial enlargement. Suppressed N-glycosylation by 2DG or metformin + 2DG also caused PD-L1 deglycosylation and reduced surface expression in MDA-MB-231 cells. PD-L1 was increased in low glucose and normalized by both drugs. 2DG and metformin + 2DG reduced PD-1 expression in Jurkat cells beyond the effects on activation, while cytokine secretion was mostly preserved. Despite increasing mitochondrial mass in TNBC cells, metformin and 2DG could therefore potentially be used as an adjunct therapy to improve anti-tumor immunity in TNBC.

5.
Biomedicines ; 10(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35203587

RESUMO

Mesenchymal stem cells (MSCs) represent the basis of novel clinical concepts in cellular therapy and tissue regeneration. Therefore, the isolation of MSCs from various tissues has become an important endeavour for stem cell biobanking and the development of regenerative therapies. Paravertebral adipose tissue is readily exposed during spinal procedures in children and could be a viable source of stem cells for therapeutic applications. Here, we describe the first case of MSCs isolated from paravertebral adipose tissue (PV-ADMSCs), obtained during a routine spinal surgery on a child. Using quantitative real-time PCR and flow cytometry, we show that PV-ADMSCs have different levels of stem marker expression compared to the MSCs from other sources while having the highest proliferation rate. Furthermore, we evaluate the multipotency of PV-ADMSCs by the three-lineage (adipogenic, osteogenic and chondrogenic) differentiation and compare it to the multipotency of MSCs from other sources. It was found that the PV-ADMSCs have a strong osteogenic potential in particular. Taken together, our data indicate that PV-ADMSCs meet the criteria for successful cell therapy, defined by the International Society for Cellular Therapy (ISCT), and thus, could provide a source of MSCs that is relatively easy to isolate and expand in culture. Due to their strong osteogenic potential, these cells provide a promising basis, especially for orthopaedic applications.

6.
Sci Rep ; 11(1): 21354, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725457

RESUMO

Anchorage-independent growth of cancer cells in vitro is correlated to metastasis formation in vivo. Metformin use is associated with decreased breast cancer incidence and currently evaluated in cancer clinical trials. The combined treatment with metformin and 2-deoxy-D-glucose (2DG) in vitro induces detachment of viable MDA-MB-231 breast cancer cells that retain their proliferation capacity. This might be important for cell detachment from primary tumors, but the metabolic changes involved are unknown. We performed LC/MS metabolic profiling on separated attached and detached MDA-MB-231 cells treated with metformin and/or 2DG. High 2DG and metformin plus 2DG altered the metabolic profile similarly to metformin, inferring that metabolic changes are necessary but not sufficient while the specific effects of 2DG are crucial for detachment. Detached cells had higher NADPH levels and lower fatty acids and glutamine levels compared to attached cells, supporting the role of AMPK activation and reductive carboxylation in supporting anchorage-independent survival. Surprisingly, the metabolic profile of detached cells was closer to untreated control cells than attached treated cells, suggesting detachment might help cells adapt to energy stress. Metformin treated cells had higher fatty and amino acid levels with lower purine nucleotide levels, which is relevant for understanding the anticancer mechanisms of metformin.


Assuntos
Desoxiglucose/farmacologia , Hipoglicemiantes/farmacologia , Metaboloma/efeitos dos fármacos , Metformina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Metabolômica , Neoplasias de Mama Triplo Negativas/metabolismo
7.
Front Oncol ; 11: 689063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222016

RESUMO

Rearrangements in the Mixed Lineage Leukemia breakpoint cluster region (MLLbcr) are frequently involved in therapy-induced leukemia, a severe side effect of anti-cancer therapies. Previous work unraveled Endonuclease G as the critical nuclease causing initial breakage in the MLLbcr in response to different types of chemotherapeutic treatment. To identify peptides protecting against therapy-induced leukemia, we screened a hemofiltrate-derived peptide library by use of an enhanced green fluorescent protein (EGFP)-based chromosomal reporter of MLLbcr rearrangements. Chromatographic purification of one active fraction and subsequent mass spectrometry allowed to isolate a C-terminal 27-mer of fibrinogen α encompassing amino acids 603 to 629. The chemically synthesized peptide, termed Fα27, inhibited MLLbcr rearrangements in immortalized hematopoietic cells following treatment with the cytostatics etoposide or doxorubicin. We also provide evidence for protection of primary human hematopoietic stem and progenitor cells from therapy-induced MLLbcr breakage. Of note, fibrinogen has been described to activate toll-like receptor 4 (TLR4). Dissecting the Fα27 mode-of action revealed association of the peptide with TLR4 in an antagonistic fashion affecting downstream NFκB signaling and pro-inflammatory cytokine production. In conclusion, we identified a hemofiltrate-derived peptide inhibitor of the genome destabilizing events causing secondary leukemia in patients undergoing chemotherapy.

8.
Front Immunol ; 12: 790258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069570

RESUMO

Coordination among multiple signaling pathways ensures an appropriate immune response, where a signaling pathway may impair or augment another signaling pathway. Here, we report a negative feedback regulation of signaling through the key innate immune mediator MyD88 by inflammasome-activated caspase-1. NLRP3 inflammasome activation impaired agonist- or infection-induced TLR signaling and cytokine production through the proteolytic cleavage of MyD88 by caspase-1. Site-specific mutagenesis was used to identify caspase-1 cleavage site within MyD88 intermediary segment. Different cleavage site location within MyD88 defined the functional consequences of MyD88 cleavage between mouse and human cells. LPS/monosodium urate-induced mouse inflammation model corroborated the physiological role of this mechanism of regulation, that could be reversed by chemical inhibition of NLRP3. While Toll/interleukin-1 receptor (TIR) domain released by MyD88 cleavage additionally contributed to the inhibition of signaling, Waldenström's macroglobulinemia associated MyD88L265P mutation is able to evade the caspase-1-mediated inhibition of MyD88 signaling through the ability of its TIRL265P domain to recruit full length MyD88 and facilitate signaling. The characterization of this mechanism reveals an additional layer of innate immunity regulation.


Assuntos
Caspase 1/imunologia , Imunidade Inata , Inflamassomos/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Transdução de Sinais/imunologia , Animais , Caspase 1/genética , Ativação Enzimática/imunologia , Células HEK293 , Humanos , Inflamassomos/genética , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Transdução de Sinais/genética , Células THP-1
9.
Cells ; 9(7)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708734

RESUMO

Cancer stem cells (CSCs), a rare cell population in tumors, are resistant to conventional chemotherapy and thus responsible for tumor recurrence. To screen for active compounds targeting CSCs, a good CSC-enriched model compatible with high-throughput screening (HTS) is needed. Here, we describe a new head and neck cancer stem cell-enriched spheroid model (SCESM) suitable for HTS analyses of anti-CSC compounds. We used FaDu cells, round-bottom ultra-low adherent (ULA) microplates, and stem medium. The formed spheroids displayed increased expression of all stem markers tested (qRT-PCR and protein analysis) in comparison to the FaDu cells grown in a standard adherent culture or in a well-known HTS-compatible multi-cellular tumor spheroid model (MCTS). Consistent with increased stemness of the cells in the spheroid, confocal microscopy detected fast proliferating cells only at the outer rim of the SCESM spheroids, with poorly/non-proliferating cells deeper in. To confirm the sensitivity of our model, we used ATRA treatment, which strongly reduced the expression of selected stem markers. Altogether, we developed a CSC-enriched spheroid model with a simple protocol, a microplate format compatible with multimodal detection systems, and a high detection signal, making it suitable for anti-CSC compounds' HTS.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias de Cabeça e Pescoço/patologia , Modelos Biológicos , Células-Tronco Neoplásicas/patologia , Esferoides Celulares/patologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/genética , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Tretinoína/farmacologia
10.
Cells ; 8(6)2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141991

RESUMO

The most prominent treatment for the serious cases of Crohn's disease (CD) are biological tumour necrosis factor (TNF) inhibitors. Unfortunately, therapy nonresponse is still a serious issue in ~1/3 of CD patients. Accurate prediction of responsiveness prior to therapy start would therefore be of great value. Clinical predictors have, however, proved insufficient. Here, we integrate genomic and expression data on potential pre-treatment biomarkers of anti-TNF nonresponse. We show that there is almost no overlap between genomic (annotated with tissue-specific expression quantitative trait loci data) and transcription (RNA and protein data) biomarkers. Furthermore, using interaction networks we demonstrate there is little direct interaction between the proposed biomarkers, though a majority do have common interactors connecting them into networks. Our gene ontology analysis shows that these networks have roles in apoptotic signalling, response to oxidative stress and inflammation pathways. We conclude that a more systematic approach with genome-wide search of genomic and expression biomarkers in the same patients is needed in future studies.


Assuntos
Biomarcadores/metabolismo , Doença de Crohn/tratamento farmacológico , Doença de Crohn/genética , Ontologia Genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Biomarcadores/sangue , Doença de Crohn/sangue , Genoma Humano , Humanos , Polimorfismo de Nucleotídeo Único/genética , RNA/genética , RNA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Oncotarget ; 9(45): 27908, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29963248

RESUMO

[This corrects the article DOI: 10.18632/oncotarget.24822.].

12.
Oncotarget ; 9(26): 18309-18326, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29719607

RESUMO

Endonuclease G (EndoG) is a nuclear-encoded endonuclease, mostly localised in mitochondria. In the nucleus EndoG participates in site-specific cleavage during replication stress and genome-wide DNA degradation during apoptosis. However, the impact of EndoG on mitochondrial DNA (mtDNA) metabolism is poorly understood. Here, we investigated whether EndoG is involved in the regulation of mtDNA replication and removal of aberrant copies. We applied the single-cell mitochondrial Transcription and Replication Imaging Protocol (mTRIP) and PCR-based strategies on human cells after knockdown/knockout and re-expression of EndoG. Our analysis revealed that EndoG stimulates both mtDNA replication initiation and mtDNA depletion, the two events being interlinked and dependent on EndoG's nuclease activity. Stimulation of mtDNA replication by EndoG was independent of 7S DNA processing at the replication origin. Importantly, both mtDNA-directed activities of EndoG were promoted by oxidative stress. Inhibition of base excision repair (BER) that repairs oxidative stress-induced DNA damage unveiled a pronounced effect of EndoG on mtDNA removal, reminiscent of recently discovered links between EndoG and BER in the nucleus. Altogether with the downstream effects on mitochondrial transcription, protein expression, redox status and morphology, this study demonstrates that removal of damaged mtDNA by EndoG and compensatory replication play a critical role in mitochondria homeostasis.

13.
Sci Rep ; 7: 44662, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28317934

RESUMO

DEK is a highly conserved chromatin-bound protein whose upregulation across cancer types correlates with genotoxic therapy resistance. Loss of DEK induces genome instability and sensitizes cells to DNA double strand breaks (DSBs), suggesting defects in DNA repair. While these DEK-deficiency phenotypes were thought to arise from a moderate attenuation of non-homologous end joining (NHEJ) repair, the role of DEK in DNA repair remains incompletely understood. We present new evidence demonstrating the observed decrease in NHEJ is insufficient to impact immunoglobulin class switching in DEK knockout mice. Furthermore, DEK knockout cells were sensitive to apoptosis with NHEJ inhibition. Thus, we hypothesized DEK plays additional roles in homologous recombination (HR). Using episomal and integrated reporters, we demonstrate that HR repair of conventional DSBs is severely compromised in DEK-deficient cells. To define responsible mechanisms, we tested the role of DEK in the HR repair cascade. DEK-deficient cells were impaired for γH2AX phosphorylation and attenuated for RAD51 filament formation. Additionally, DEK formed a complex with RAD51, but not BRCA1, suggesting a potential role regarding RAD51 filament formation, stability, or function. These findings define DEK as an important and multifunctional mediator of HR, and establish a synthetic lethal relationship between DEK loss and NHEJ inhibition.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Proteínas Oncogênicas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Feminino , Células HeLa , Histonas/metabolismo , Recombinação Homóloga/efeitos dos fármacos , Recombinação Homóloga/efeitos da radiação , Humanos , Masculino , Camundongos Knockout , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/efeitos da radiação , Inibidores de Proteínas Quinases/farmacologia , Rad51 Recombinase/metabolismo , Radiação Ionizante , Proteína de Replicação A/metabolismo
14.
Oncoscience ; 3(3-4): 134, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27226986

RESUMO

[This corrects the article on p. 938 in vol. 2, PMID: 26909360.].

15.
Front Cell Dev Biol ; 3: 41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161385

RESUMO

Despite manifold efforts to achieve reduced-intensity and -toxicity regimens, secondary leukemia has remained the most severe side effect of chemotherapeutic cancer treatment. Rearrangements involving a short telomeric <1 kb region of the mixed lineage leukemia (MLL) gene are the most frequently observed molecular changes in secondary as well as infant acute leukemia. Due to the mode-of-action of epipodophyllotoxins and anthracyclines, which have widely been used in cancer therapy, and support from in vitro experiments, cleavage of this MLL breakpoint cluster hotspot by poisoned topoisomerase II was proposed to trigger the molecular events leading to malignant transformation. Later on, clinical patient data and cell-based studies addressing a wider spectrum of stimuli identified cellular stress signaling pathways, which create secondary DNA structures, provide chromatin accessibility, and activate nucleases other than topoisomerase II at the MLL. The MLL destabilizing signaling pathways under discussion, namely early apoptotic DNA fragmentation, transcription stalling, and replication stalling, may all act in concert upon infection-, transplantation-, or therapy-induced cell cycle entry of hematopoietic stem and progenitor cells (HSPCs), to permit misguided cleavage and error-prone DNA repair in the cell-of-leukemia-origin.

16.
Oncoscience ; 2(12): 938-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26909360
17.
Int J Cancer ; 131(8): 1779-89, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22287159

RESUMO

Cysteine cathepsins play an important role in shaping the highly infiltrative growth pattern of human gliomas. We have previously demonstrated that the activity of cysteine cathepsins is elevated in invasive glioblastoma (GBM) cells in vitro, in part due to attenuation of their endogenous inhibitors, the cystatins. To investigate this relationship in vivo, we established U87-MG xenografts in non-obese diabetic (NOD)/severe combined immunodeficiency (SCID)-enhanced green fluorescent protein (eGFP) mice. Here, tumor growth correlated with an elevated enzymatic activity of CatB both in the tumor core and at the periphery, whereas CatS and CatL levels were higher at the xenograft edge compared to the core. Reversely, StefB expression was detected in the tumor core, but it was generally absent in the tumor periphery, suggesting that down-regulation of this inhibitor correlates with in vivo invasion. In human GBM samples, all cathepsins were elevated at the tumor periphery compared to brain parenchyma. CatB was also typically associated with angiogenic endothelia and necrotic areas. StefB was mainly detected in the tumor core, whereas CysC and StefA were evenly distributed, reflecting the observations in the xenografts. However, at the mRNA level, no differences in cathepsins and cystatins were observed between the tumor center and the periphery in both human biopsies and xenografts. Interestingly, in human tumors, cathepsin and stefin transcript levels correlated with CD68 and CXCR4 levels, but not with epidermal growth factor receptor (EGFR). Moreover, we reveal for the first time that an elevated StefA mRNA level is a highly significant prognostic factor for patient survival.


Assuntos
Biomarcadores Tumorais/metabolismo , Catepsinas/metabolismo , Cistatinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Animais , Biomarcadores Tumorais/genética , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Catepsinas/genética , Cistatinas/genética , Ensaio de Imunoadsorção Enzimática , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Glioblastoma/genética , Glioblastoma/mortalidade , Humanos , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida
18.
Nucleic Acids Res ; 39(17): 7465-76, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21653549

RESUMO

The human DEK gene is frequently overexpressed and sometimes amplified in human cancer. Consistent with oncogenic functions, Dek knockout mice are partially resistant to chemically induced papilloma formation. Additionally, DEK knockdown in vitro sensitizes cancer cells to DNA damaging agents and induces cell death via p53-dependent and -independent mechanisms. Here we report that DEK is important for DNA double-strand break repair. DEK depletion in human cancer cell lines and xenografts was sufficient to induce a DNA damage response as assessed by detection of γH2AX and FANCD2. Phosphorylation of H2AX was accompanied by contrasting activation and suppression, respectively, of the ATM and DNA-PK pathways. Similar DNA damage responses were observed in primary Dek knockout mouse embryonic fibroblasts (MEFs), along with increased levels of DNA damage and exaggerated induction of senescence in response to genotoxic stress. Importantly, Dek knockout MEFs exhibited distinct defects in non-homologous end joining (NHEJ) when compared to their wild-type counterparts. Taken together, the data demonstrate new molecular links between DEK and DNA damage response signaling pathways, and suggest that DEK contributes to DNA repair.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas Oncogênicas/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Camundongos , Camundongos Knockout , Camundongos Nus , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/genética , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
19.
Radiol Oncol ; 45(2): 102-15, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22933943

RESUMO

INTRODUCTION: CD133 is a marker for a population of glioblastoma (GBM) and normal neural stem cells (NNSC). We aimed to reveal whether the migratory potential and differentiation of these stem cells is associated with CD133 expression and with cathepsin proteases (Cats). MATERIALS AND METHODS.: The invasiveness of normal NNSC, GBM/CD133+ cell lines and GBM spheroids was evaluated in 3D collagen, as well as of U87-MG and normal astrocytes (NHA) grown in monolayers in 2D Matrigel. Expression of Cats B, L and S was measured at mRNA and activity levels and their relation to invasiveness, to CD133 mRNA in 26 gliomas, and to the survival of these patients. RESULTS: The average yield of CD133+ cells from GBM samples was 9.6 %. Survival of patients with higher CD133 mRNA expression was significantly shorter (p< 0.005). Invasion, associated with proteolytic degradation of matrix, was higher in normal stem cells and GBM spheroids and cells than in isolated GBM CD133+ cells. In glioma samples, there was no correlation between CD133 mRNA expression and Cat mRNAs, but there was an inverse correlation with Cat activities. CONCLUSIONS: The study confirms CD133 as a prognostic marker for the survival of GBM patients. We demonstrated that NNSC have higher invasion potential and invade the collagen matrix in a mode different from that of GBM, initiating stem cell spheres. This result could have implications for the design of new therapeutics, including protease inhibitors that specifically target invasive tumour stem cells. Increased activity of cathepsins in CD133- cells suggests their role in the invasive behaviour of GBM.

20.
Pathol Oncol Res ; 15(4): 711-23, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19434518

RESUMO

Cells that migrate away from a central tumour into brain tissue are responsible for inefficient glioblastoma treatment. This migratory behaviour depends partially on lysosomal cysteine cathepsins. Reportedly, the expression of cathepsins B, L and S gradually increases in the progression from benign astrocytoma to the malignant glioblastoma, although their specific roles in glioma progression have not been revealed. The aim of this study was to clarify their specific contribution to glioblastoma cell invasion. The differences between the matrix invading cells and non-invading core cells from spheroids derived from glioblastoma cell culture and from glioblastoma patients' biopsies, and embedded in type I collagen, have been studied at the mRNA, protein and cathepsin activity levels. Analyses of the two types of cells showed that the three cathepsins were up-regulated post-translationally, their specific activities increasing in the invading cells. The cystatin levels were also differentially altered, resulting in higher ratio of cathepsins B and L to stefin B in the invading cells. However, using specific synthetic inhibitors and silencing strategies revealed that only cathepsin B activity was involved in the invasion of glioblastoma cells, confirming previous notion of cathepsin B as tumour invasiveness biomarker. Our data support the concept of specific roles of cysteine cathepsins in cancer progression. Finally the study points out on the complexity of protease regulation and the need to include functional proteomics in the systems biology approaches to understand the processes associated with glioma invasion and progression.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Catepsina B/metabolismo , Movimento Celular/fisiologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Biossíntese de Proteínas/fisiologia , Adulto , Idoso , Catepsina B/genética , Catepsina L/metabolismo , Catepsinas/metabolismo , Linhagem Celular Tumoral , Colágeno/metabolismo , Cistatinas/metabolismo , Combinação de Medicamentos , Feminino , Humanos , Laminina/metabolismo , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/fisiopatologia , Proteoglicanas/metabolismo , Esferoides Celulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA